Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The initial steps of myofibril assembly: integrins pave the way

Abstract

Myofibril assembly results in a regular array of identical sarcomeres in striated muscle. Sarcomere structure is conserved across the animal kingdom, which implies that the mechanisms of myofibril assembly are also likely to be conserved. Recent advances from model genetic systems and insights from stress fibre cell biology have shed light on the mechanisms that set sarcomere spacing and the initial assembly of sarcomere arrays. We propose a model of integrin-dependent cell–matrix adhesion as the starting point for myofibrillogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic overview of striated muscle.
Figure 2: Model of myofibril assembly.

Similar content being viewed by others

References

  1. Clark, K. A., McElhinny, A. S., Beckerle, M. C. & Gregorio, C. C. Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell Dev. Biol. 18, 637–706 (2002).

    Article  CAS  Google Scholar 

  2. Frank, D., Kuhn, C., Katus, H. A. & Frey, N. The sarcomeric Z-disk: a nodal point in signalling and disease. J. Mol. Med. 84, 446–468 (2006).

    Article  CAS  Google Scholar 

  3. Bang, M. L. et al. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J. Cell Biol. 173, 905–916 (2006).

    Article  CAS  Google Scholar 

  4. Nongthomba, U. et al. Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. J. Cell Sci. 117, 1795–1805 (2004).

    Article  CAS  Google Scholar 

  5. Witt, C. C. et al. Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J. 25, 3843–3855 (2006).

    Article  CAS  Google Scholar 

  6. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    Article  CAS  Google Scholar 

  7. Trinick, J. Interaction of titin/connectin with the thick filament. Adv. Biophys. 33, 81–90 (1996).

    Article  CAS  Google Scholar 

  8. Danowski, B. A., Imanaka-Yoshida, K., Sanger, J. M. & Sanger, J. W. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J. Cell Biol. 118, 1411–1420 (1992).

    Article  CAS  Google Scholar 

  9. Moerman, D. G. & Williams, B. D. Sarcomere assembly in C. elegans muscle. WormBook [online], 16 Jan 2006 (doi:10.1895/wormbook.1.81.1).

    Google Scholar 

  10. Hudson, A. M., Petrella, L. N., Tanaka, A. J. & Cooley, L. Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps. Dev. Biol. 314, 329–340 (2008).

    Article  CAS  Google Scholar 

  11. Pardo, J. V., Siliciano, J. D. & Craig, S. W. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc. Natl Acad. Sci. USA 80, 1008–1012 (1983).

    Article  CAS  Google Scholar 

  12. Ervasti, J. M. Costameres: the Achilles' heel of Herculean muscle. J. Biol. Chem. 278, 13591–13594 (2003).

    Article  CAS  Google Scholar 

  13. Quach, N. L. & Rando, T. A. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev. Biol. 293, 38–52 (2006).

    Article  CAS  Google Scholar 

  14. Rhee, D., Sanger, J. M. & Sanger, J. W. The premyofibril: evidence for its role in myofibrillogenesis. Cell. Motil. Cytoskeleton 28, 1–24 (1994).

    Article  CAS  Google Scholar 

  15. Sanger, J. W. et al. How to build a myofibril. J. Muscle Res. Cell Motil. 26, 343–354 (2005).

    Article  Google Scholar 

  16. Bloor, J. W. & Brown, N. H. Genetic analysis of the Drosophila αPS2 integrin subunit reveals discrete adhesive, morphogenetic and sarcomeric functions. Genetics 148, 1127–1142 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hresko, M. C., Williams, B. D. & Waterston, R. H. Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J. Cell Biol. 124, 491–506 (1994).

    Article  CAS  Google Scholar 

  18. Volk, T., Fessler, L. I. & Fessler, J. H. A role for integrin in the formation of sarcomeric cytoarchitecture. Cell 63, 525–536 (1990).

    Article  CAS  Google Scholar 

  19. Heuson-Stiennon, J. Morphogenése de la cellule musculaire striée, étudiée au microscope électronique. I. Formation des structures fibrillaires. J. Microscopie 4, 657–678 (1965) (in French).

    Google Scholar 

  20. Tokuyasu, K. T. & Maher, P. A. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of α-actinin dots within titin spots at the time of the first myofibril formation. J. Cell Biol. 105, 2795–2801 (1987).

    Article  CAS  Google Scholar 

  21. Kelly, D. E. Myofibrillogenesis and Z-band differentiation. Anat. Rec. 163, 403–425 (1969).

    Article  CAS  Google Scholar 

  22. Tokuyasu, K. T. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. III. Generation of fasciae adherentes and costameres. J. Cell Biol. 108, 43–53 (1989).

    Article  CAS  Google Scholar 

  23. Du, A., Sanger, J. M. & Sanger, J. W. Cardiac myofibrillogenesis inside intact embryonic hearts. Dev. Biol. 318, 236–246 (2008).

    Article  CAS  Google Scholar 

  24. Cramer, L. P., Siebert, M. & Mitchison, T. J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136, 1287–1305 (1997).

    Article  CAS  Google Scholar 

  25. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  Google Scholar 

  26. Langanger, G. et al. The molecular organization of myosin in stress fibers of cultured cells. J. Cell Biol. 102, 200–209 (1986).

    Article  CAS  Google Scholar 

  27. Peterson, L. J. et al. Simultaneous stretching and contraction of stress fibers in vivo. Mol. Biol. Cell 15, 3497–3508 (2004).

    Article  CAS  Google Scholar 

  28. Tullio, A. N. et al. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc. Natl Acad. Sci. USA 94, 12407–12412 (1997).

    Article  CAS  Google Scholar 

  29. van der Ven, P. F., Ehler, E., Perriard, J. C. & Fürst, D. O. Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J. Muscle Res. Cell Motil. 20, 569–579 (1999).

    Article  CAS  Google Scholar 

  30. Fujita, H., Nedachi, T. & Kanzaki, M. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp. Cell Res. 313, 1853–1865 (2007).

    Article  CAS  Google Scholar 

  31. Schwander, M. et al. β1 integrins regulate myoblast fusion and sarcomere assembly. Dev. Cell 4, 673–685 (2003).

    Article  CAS  Google Scholar 

  32. Jani, K. & Schöck, F. Zasp is required for the assembly of functional integrin adhesion sites. J. Cell Biol. 179, 1583–1597 (2007).

    Article  CAS  Google Scholar 

  33. Au, Y. et al. Solution structure of ZASP PDZ domain; implications for sarcomere ultrastructure and enigma family redundancy. Structure 12, 611–622 (2004).

    Article  CAS  Google Scholar 

  34. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  Google Scholar 

  35. Hilenski, L. L., Ma, X. H., Vinson, N., Terracio, L. & Borg, T. K. The role of β1 integrin in spreading and myofibrillogenesis in neonatal rat cardiomyocytes in vitro. Cell. Motil. Cytoskeleton 21, 87–100 (1992).

    Article  CAS  Google Scholar 

  36. Bai, J., Hartwig, J. H. & Perrimon, N. SALS, a WH2-domain-containing protein, promotes sarcomeric actin filament elongation from pointed ends during Drosophila muscle growth. Dev. Cell 13, 828–842 (2007).

    Article  CAS  Google Scholar 

  37. Littlefield, R., Almenar-Queralt, A. & Fowler, V. M. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nature Cell Biol. 3, 544–551 (2001).

    Article  CAS  Google Scholar 

  38. Mardahl-Dumesnil, M. & Fowler, V. M. Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle. J. Cell Biol. 155, 1043–1053 (2001).

    Article  CAS  Google Scholar 

  39. Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  Google Scholar 

  40. Chereau, D. et al. Leiomodin is an actin filament nucleator in muscle cells. Science 320, 239–243 (2008).

    Article  CAS  Google Scholar 

  41. Butler, B., Gao, C., Mersich, A. T. & Blystone, S. D. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr. Biol. 16, 242–251 (2006).

    Article  CAS  Google Scholar 

  42. Nemethova, M., Auinger, S. & Small, J. V. Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J. Cell Biol. 180, 1233–1244 (2008).

    Article  CAS  Google Scholar 

  43. Homem, C. C. & Peifer, M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 135, 1005–1018 (2008).

    Article  CAS  Google Scholar 

  44. Kim, J., Löwe, T. & Hoppe, T. Protein quality control gets muscle into shape. Trends Cell Biol. 18, 264–272 (2008).

    Article  CAS  Google Scholar 

  45. Etard, C. et al. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev. Biol. 308, 133–143 (2007).

    Article  CAS  Google Scholar 

  46. Hawkins, T. A. et al. The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 135, 1147–1156 (2008).

    Article  CAS  Google Scholar 

  47. Etard, C., Roostalu, U. & Strähle, U. Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. J. Cell Biol. 180, 1163–1175 (2008).

    Article  CAS  Google Scholar 

  48. De Deyne, P. G. Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am. J. Physiol. Cell Physiol. 279, C1801–C1811 (2000).

    Article  CAS  Google Scholar 

  49. Sharp, W. W., Simpson, D. G., Borg, T. K., Samarel, A. M. & Terracio, L. Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 273, H546–H556 (1997).

    Article  CAS  Google Scholar 

  50. Simpson, D. G., Decker, M. L., Clark, W. A. & Decker, R. S. Contractile activity and cell–cell contact regulate myofibrillar organization in cultured cardiac myocytes. J. Cell Biol. 123, 323–336 (1993).

    Article  CAS  Google Scholar 

  51. Dabiri, G. A., Turnacioglu, K. K., Sanger, J. M. & Sanger, J. W. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc. Natl Acad. Sci. USA 94, 9493–9498 (1997).

    Article  CAS  Google Scholar 

  52. McKenna, N. M., Johnson, C. S. & Wang, Y. L. Formation and alignment of Z lines in living chick myotubes microinjected with rhodamine-labeled alpha-actinin. J. Cell Biol. 103, 2163–2171 (1986).

    Article  CAS  Google Scholar 

  53. Reedy, M. C. & Beall, C. Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Dev. Biol. 160, 443–465 (1993).

    Article  CAS  Google Scholar 

  54. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    Article  CAS  Google Scholar 

  55. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  Google Scholar 

  56. Helfman, D. M. et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell 10, 3097–3112 (1999).

    Article  CAS  Google Scholar 

  57. Totsukawa, G. et al. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J. Cell Biol. 164, 427–439 (2004).

    Article  CAS  Google Scholar 

  58. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  Google Scholar 

  59. Sniadecki, N. J. et al. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl Acad. Sci. USA 104, 14553–14558 (2007).

    Article  CAS  Google Scholar 

  60. Schultheiss, T. et al. Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J. Cell Biol. 110, 1159–1172 (1990).

    Article  CAS  Google Scholar 

  61. Lange, S. et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599–1603 (2005).

    Article  CAS  Google Scholar 

  62. Linke, W. A. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 77, 637–648 (2008).

    CAS  PubMed  Google Scholar 

  63. Machado, C. & Andrew, D. J. D-Titin: a giant protein with dual roles in chromosomes and muscles. J. Cell Biol. 151, 639–652 (2000).

    Article  CAS  Google Scholar 

  64. Musa, H. et al. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J. Cell Sci. 119, 4322–4331 (2006).

    Article  CAS  Google Scholar 

  65. van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H. & Fürst, D. O. A functional knock-out of titin results in defective myofibril assembly. J. Cell Sci. 113, 1405–1414 (2000).

    CAS  PubMed  Google Scholar 

  66. Burkart, C. et al. Modular proteins from the Drosophila sallimus (sls) gene and their expression in muscles with different extensibility. J. Mol. Biol. 367, 953–969 (2007).

    Article  CAS  Google Scholar 

  67. Benian, G. M., Kiff, J. E., Neckelmann, N., Moerman, D. G. & Waterston, R. H. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature 342, 45–50 (1989).

    Article  CAS  Google Scholar 

  68. Seipel, K. & Schmid, V. Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev. Biol. 282, 14–26 (2005).

    Article  CAS  Google Scholar 

  69. Fatkin, D. & Graham, R. M. Molecular mechanisms of inherited cardiomyopathies. Physiol. Rev. 82, 945–980 (2002).

    Article  CAS  Google Scholar 

  70. Sheikh, F., Bang, M. L., Lange, S. & Chen, J. “Z”eroing in on the role of Cypher in striated muscle function, signaling, and human disease. Trends Cardiovasc. Med. 17, 258–262 (2007).

    Article  CAS  Google Scholar 

  71. Au, Y. The muscle ultrastructure: a structural perspective of the sarcomere. Cell. Mol. Life Sci. 61, 3016–3033 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the authors of the large body of work that we could not cite owing to space constraints. J.C.S. is funded as a member of the EU Framework 6 Network of Excellence 'Myores'. F.S. is a Canadian Institutes of Health Research New Investigator.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

John C. Sparrow's homepage

Frieder Schöck's homepage

Glossary

A-band

The area of the sarcomere that is spanned by thick filaments.

Cardiomyocyte

A fully differentiated heart muscle cell with a single nucleus.

Costamere

An integrin adhesion site that connects the lateral sarcolemma to the surrounding connective tissue at the level of the Z termini end-to-end in cardiomyocytes.

Focal adhesion

An integrin adhesion site on the basal side of tissue culture cells to which stress fibres attach.

I-band

The area on both sides of the Z-disk that is spanned by thin filaments that do not overlap with thick filaments.

Integrin adhesion site

Any cell–matrix adhesion that is mediated by integrins, for example, a focal adhesion, a costamere or a myotendinous junction.

Intercalated disc

A cadherin adhesion site that connects myofibre termini end-to-end in cardiomyocytes.

Myoblast

A muscle precursor cell with a single nucleus.

Myotube

A multinucleated skeletal muscle cell.

Myotendinous junction

An integrin adhesion site that connects myofibre termini to tendons or tendon cells.

Premyofibril

A myofibril precursor that partly resembles non-muscle cell stress fibres. Premyofibrils contain alternate sarcomeric α-actinin and non-muscle myosin II that originate at integrin-mediated Z-body precursors, called protocostameres, in muscle cells.

Protocostamere

A small integrin adhesion site and Z-body precursor, to which the initial cortical premyofibrils are anchored.

Sarcolemma

The muscle cell membrane.

Sarcomere

The smallest contractile unit of muscle, which is bordered by Z-disks.

Stress fibre

A graded polarity actin filament bundle that has alternate α-actinin and non-muscle myosin II, and is found in non-muscle tissue culture cells.

Z-body

An electron-dense Z-disk precursor that is assembled in association with protocostameres. It contains Z-disk proteins, including ZASP, sarcomeric α-actinin and titin.

Z-disk

The boundary of the sarcomere, at which antiparallel thin filaments are anchored to α-actinin and many other characteristic Z-disk proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparrow, J., Schöck, F. The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol 10, 293–298 (2009). https://doi.org/10.1038/nrm2634

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing