Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

One step at a time: endoplasmic reticulum-associated degradation

Key Points

  • Endoplasmic reticulum (ER)-associated degradation (ERAD) is a secretory protein quality control process that results in the removal of aberrant proteins from the ER.

  • ERAD substrates are selected by molecular chaperones that identify proteins that might be unable to fold, that fold slowly or contain a misfolded domain, or those that lack specific protein partners.

  • Nearly all ERAD substrates are modified with ubiquitin, a 76 amino-acid peptide that helps target proteins to the proteasome. Specific E3 ubiquitin ligases are required for ERAD and reside in or near the ER membrane.

  • ERAD substrates are degraded by the proteasome, a large multi-catalytic protease that resides in the cytoplasm. Although integral membrane proteins in the ER can readily access the proteasome, soluble ERAD substrates (that reside within the lumen) must be retrotranslocated or dislocated from the ER to the cytoplasm before they are degraded.

  • The ERAD pathway is conserved from yeast to humans, and indeed many of the factors that contribute to this pathway were first identified in the yeast Saccharomyces cerevisiae.

  • A growing number of links between the ERAD pathway and human diseases have been identified.

Abstract

Protein folding in the endoplasmic reticulum (ER) is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway. During ERAD, molecular chaperones and associated factors recognize and target substrates for retrotranslocation to the cytoplasm, where they are degraded by the ubiquitin–proteasome machinery. The discovery of diseases that are associated with ERAD substrates highlights the importance of this pathway. Here, we summarize our current understanding of each step during ERAD, with emphasis on the factors that catalyse distinct activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A step-by-step illustration of endoplasmic reticulum-associated degradation.
Figure 2: N-linked glycosylation and the degradation of glycosylated proteins.

Similar content being viewed by others

References

  1. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    CAS  PubMed  Google Scholar 

  2. Despa, F., Orgill, D. P. & Lee, R. C. Molecular crowding effects on protein stability. Ann. NY Acad. Sci. 1066, 54–66 (2005).

    CAS  PubMed  Google Scholar 

  3. Jahn, T. R. & Radford, S. E. The yin and yang of protein folding. FEBS J. 272, 5962–5970 (2005).

    CAS  PubMed  Google Scholar 

  4. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    CAS  PubMed  Google Scholar 

  5. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    CAS  PubMed  Google Scholar 

  6. Kanapin, A. et al. Mouse proteome analysis. Genome Res. 13, 1335–1344 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nature Rev. Mol. Cell Biol. 4, 181–191 (2003).

    CAS  Google Scholar 

  8. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996). The development of an in vitro system led to the first demonstration that a mutated soluble protein in the ER could be exported to the cytoplasm en route to its degradation, and the term ERAD was coined to describe this process.

    CAS  PubMed  Google Scholar 

  9. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins Cell 54, 209–220 (1988).

    CAS  PubMed  Google Scholar 

  10. Klausner, R. D. & Sitia, R. Protein degradation in the endoplasmic reticulum. Cell 62, 611–614 (1990).

    CAS  PubMed  Google Scholar 

  11. Finger, A., Knop, M. & Wolf, D. H. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur. J. Biochem. 218, 565–574 (1993).

    CAS  PubMed  Google Scholar 

  12. Otsu, M., Urade, R., Kito, M., Omura, F. & Kikuchi, M. A possible role of ER-60 protease in the degradation of misfolded proteins in the endoplasmic reticulum. J. Biol. Chem. 270, 14958–14961 (1995).

    CAS  PubMed  Google Scholar 

  13. Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176–179 (1993). Provided the first link between the ubiquitin–proteasome pathway and the quality control of a mutated membrane protein in the yeast ER.

    CAS  PubMed  Google Scholar 

  14. Jensen, T. J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).

    CAS  PubMed  Google Scholar 

  15. Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin–proteasome pathway Cell 83, 121–127 (1995). Together with reference 14, the degradation of a disease-causing, mutated form of the cystic fibrosis transmembrane conductance regulator was found to require the ubiquitin–proteasome system.

    CAS  PubMed  Google Scholar 

  16. Werner, E. D., Brodsky, J. L. & McCracken, A. A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl Acad. Sci. USA. 93, 13797–13801 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hiller, M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin–proteasome pathway. Science 273, 1725–1728 (1996). A misfolded form of yeast carboxypeptidase Y (Cpy*) was shown to transit from the ER into the cytoplasm where it was degraded by the proteasome.

    CAS  PubMed  Google Scholar 

  18. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein Mol. Biol. Cell 7, 2029–2044 (1996). Using a yeast genetic screen, these investigators discovered that the degradation of a wild-type, membrane-integrated enzyme in the ER was metabolically regulated by virtue of its being targeted to the 26S proteasome. This indicated that the ERAD pathway could be used to modulate cellular homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wiertz, E. J. et al. The human cytomegalovirus us11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996). The major histocompatibility class I protein was found to be dislocated from the ER and degraded by the proteasome in cells that express a unique human cytomegalovirus-encoded gene product. This study provided the first indication that the ERAD pathway could be co-opted by a pathogen.

    CAS  PubMed  Google Scholar 

  20. Lord, J. M., Roberts, L. M. & Lencer, W. I. Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: co-opting basic mechanisms of endoplasmic reticulum-associated degradation. Curr. Top. Microbiol. Immunol. 300, 149–168 (2005).

    CAS  PubMed  Google Scholar 

  21. Sayeed, A. & Ng, D. T. W. Search and destroy: ER quality control and ER-associated protein degradation. Crit. Rev. Biochem. Mol. Biol. 40, 75–91 (2005).

    CAS  PubMed  Google Scholar 

  22. Hebert, D. N. & Molinari, M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377–1408 (2007).

    CAS  PubMed  Google Scholar 

  23. Nakatsukasa, K. & Brodsky, J. L. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9, 861–870 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Varga, K. et al. Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J. Biol. Chem. 279, 22578–22584 (2004).

    CAS  PubMed  Google Scholar 

  25. Knittler, M. R., Dirks, S. & Haas, I. G. Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 92, 1764–1768 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmitz, A., Maintz, M., Kehle, T. & Herzog, V. In vivo iodination of a misfolded proinsulin reveals co-localized signals for Bip binding and for degradation in the ER. EMBO J. 14, 1091–1098 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishikawa, S. I., Fewell, S. W., Kato, Y., Brodsky, J. L. & Endo, T. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol. 153, 1061–1070 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong, M., Bridges, J. P., Apsley, K., Xu, Y. & Weaver, T. E. ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol. Biol. Cell 19, 2620–2630 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y. et al. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol. Biol. Cell 12, 1303–1314 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T. & Brodsky, J. L. Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol. Biol. Cell 15, 4787–4797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Meacham, G. C. et al. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rubenstein, R. C. & Zeitlin, P. L. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DF508-CFTR. Am. J. Physiol. Cell Physiol. 278, C259–C267 (2000).

    CAS  PubMed  Google Scholar 

  33. Alberti, S., Bohse, K., Arndt, V., Schmitz, A. & Hohfeld, J. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol. Biol. Cell 15, 4003–4010 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S. & Hohfeld, J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol. Biol. Cell 16, 5891–5900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Denic, V., Quan, E. M. & Weissman, J. S. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126, 349–359 (2006). The use of proteomic technologies and yeast genetics led to a molecular definition of components that constitute the ERAD-L machinery. The resulting data hinted at the existence of a chaperone-initiated pathway that leads to the recognition and ubiquitylation of ERAD-L substrates.

    CAS  PubMed  Google Scholar 

  36. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001).

    CAS  PubMed  Google Scholar 

  37. Mimura, N. et al. Altered quality control in the endoplasmic reticulum causes cortical dysplasia in knock-in mice expressing a mutant BiP. Mol. Cell. Biol. 28, 293–301 (2008).

    CAS  PubMed  Google Scholar 

  38. Caramelo, J. J., Castro, O. A., Alonso, L. G., De Prat-Gay, G. & Parodi, A. J. UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc. Natl Acad. Sci. USA 100, 86–91 (2003).

    CAS  PubMed  Google Scholar 

  39. Taylor, S. C., Thibault, P., Tessier, D. C., Bergeron, J. J. & Thomas, D. Y. Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase. EMBO Rep. 4, 405–411 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Caramelo, J. J. & Parodi, A. J. Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283, 10221–10225 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fagioli, C. & Sitia, R. Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J. Biol. Chem. 276, 12885–12892 (2001).

    CAS  PubMed  Google Scholar 

  42. Hebert, D. N., Zhang, J. X., Chen, W., Foellmer, B. & Helenius, A. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J. Cell Biol. 139, 613–623 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kostova, Z. & Wolf, D. H. Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J. Cell Sci. 118, 1485–1492 (2005).

    CAS  PubMed  Google Scholar 

  44. Spear, E. D. & Ng, D. T. Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation. J. Cell Biol. 169, 73–82 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vanoni, O., Paganetti, P. & Molinari, M. Consequences of individual N-glycan deletions and of proteasomal inhibition on secretion of active BACE. Mol. Biol. Cell 19, 4086–4098 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ireland, B. S., Brockmeier, U., Howe, C. M., Elliott, T. & Williams, D. B. Lectin-deficient calreticulin retains full functionality as a chaperone for class I histocompatibility molecules. Mol. Biol. Cell 19, 2413–2423 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hammond, C. & Helenius, A. Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266, 456–458 (1994).

    CAS  PubMed  Google Scholar 

  48. Stronge, V. S., Saito, Y., Ihara, Y. & Williams, D. B. Relationship between calnexin and BiP in suppressing aggregation and promoting refolding of protein and glycoprotein substrates. J. Biol. Chem. 276, 39779–39787 (2001).

    CAS  PubMed  Google Scholar 

  49. Zhang, J. X., Braakman, I., Matlack, K. E. & Helenius, A. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol. Biol. Cell 8, 1943–1954 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Molinari, M., Galli, C., Piccaluga, V., Pieren, M. & Paganetti, P. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J. Cell Biol. 158, 247–257 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Svedine, S., Wang, T., Halaban, R. & Hebert, D. N. Carbohydrates act as sorting determinants in ER-associated degradation of tyrosinase. J. Cell Sci. 117, 2937–2949 (2004).

    CAS  PubMed  Google Scholar 

  52. Molinari, M., Galli, C., Vanoni, O., Arnold, S. M. & Kaufman, R. J. Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Mol. Cell 20, 503–512 (2005).

    CAS  PubMed  Google Scholar 

  53. Le Fourn, V., Siffroi-Fernandez, S., Ferrand, M. & Franc, J. L. Competition between calnexin and BiP in the endoplasmic reticulum can lead to the folding or degradation of human thyroperoxidase. Biochemistry 45, 7380–7388 (2006).

    CAS  PubMed  Google Scholar 

  54. Tsai, B., Rodighiero, C., Lencer, W. I. & Rapoport, T. A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 937–948 (2001).

    CAS  PubMed  Google Scholar 

  55. Schelhaas, M. et al. Simian virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131, 516–529 (2007).

    CAS  PubMed  Google Scholar 

  56. Oliver, J. D., Roderick, H. L., Llewellyn, D. H. & High, S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell 10, 2573–2582 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gillece, P., Luz, J. M., Lennarz, W. J., de La Cruz, F. J. & Romisch, K. Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J. Cell Biol. 147, 1443–1456 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ushioda, R. et al. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321, 569–572 (2008).

    CAS  PubMed  Google Scholar 

  59. Okuda-Shimizu, Y. & Hendershot, L. M. Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Mol. Cell 28, 544–554 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Valetti, C. & Sitia, R. The differential effects of dithiothreitol and 2-mercaptoethanol on the secretion of partially and completely assembled immunoglobulins suggest that thiol-mediated retention does not take place in or beyond the Golgi. Mol. Biol. Cell 5, 1311–1324 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000). A microarray analysis was conducted to uncover the range of factors and processes that are induced by the unfolded protein response (UPR) in yeast, and genetic techniques showed the complementary nature of the ERAD and UPR pathways.

    CAS  PubMed  Google Scholar 

  62. Doms, R. W., Keller, D. S., Helenius, A. & Balch, W. E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 105, 1957–1969 (1987).

    CAS  PubMed  Google Scholar 

  63. Copeland, C. S. et al. Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin. Cell 53, 197–209 (1988).

    CAS  PubMed  Google Scholar 

  64. Prabakaran, D., Kim, P. S., Dixit, V. M. & Arvan, P. Oligomeric assembly of thrombospondin in the endoplasmic reticulum of thyroid epithelial cells. Eur. J. Cell Biol. 70, 134–141 (1996).

    CAS  PubMed  Google Scholar 

  65. Fra, A. M., Fagioli, C., Finazzi, D., Sitia, R. & Alberini, C. M. Quality control of ER synthesized proteins: an exposed thiol group as a three-way switch mediating assembly, retention and degradation. EMBO J. 12, 4755–4761 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shenkman, M., Ehrlich, M. & Lederkremer, G. Z. Masking of an endoplasmic reticulum retention signal by its presence in the two subunits of the asialoglycoprotein receptor. J. Biol. Chem. 275, 2845–2851 (2000).

    CAS  Google Scholar 

  67. Shapira, I., Charuvi, D., Elkabetz, Y., Hirschberg, K. & Bar-Nun, S. Distinguishing between retention signals and degrons acting in ERAD. J. Cell Sci. 120, 4377–4387 (2007).

    CAS  PubMed  Google Scholar 

  68. Bonifacino, J. S., Cosson, P. & Klausner, R. D. Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell 63, 503–513 (1990).

    CAS  PubMed  Google Scholar 

  69. Bole, D. G., Hendershot, L. M. & Kearney, J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102, 1558–1566 (1986).

    CAS  PubMed  Google Scholar 

  70. Elkabetz, Y. et al. Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin–proteasome pathway. J. Biol. Chem. 278, 18922–18929 (2003).

    CAS  PubMed  Google Scholar 

  71. Vashist, S. & Ng, D. T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52 (2004). The development and use of model, modular ERAD substrates led to the first hint that the ERAD pathway could be subdivided into distinct substrate-specific pathways, which were named ERAD-L and ERAD-C.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Huyer, G. et al. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J. Biol. Chem. 279, 38369–38378 (2004).

    CAS  PubMed  Google Scholar 

  73. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin–ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006). A comprehensive mass spectrometry analysis was conducted to define the components that comprise the machineries required for ERAD-L and ERAD-C, and the existence of an ERAD-M pathway was confirmed.

    CAS  PubMed  Google Scholar 

  74. Gauss, R., Sommer, T. & Jarosch, E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J. 25, 1827–1835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kota, J., Gilstring, C. F. & Ljungdahl, P. O. Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. J. Cell Biol. 176, 617–628 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakatsukasa, K., Huyer, G., Michaelis, S. & Brodsky, J. L. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132, 101–112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Deshaies, R. J., Sanders, S. L., Feldheim, D. A. & Schekman, R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349, 806–808 (1991).

    CAS  PubMed  Google Scholar 

  78. Schulze, A. et al. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol. 354, 1021–1027 (2005).

    CAS  PubMed  Google Scholar 

  79. Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kanehara, K., Kawaguchi, S. & Ng, D. T. The EDEM and Yos9p families of lectin-like ERAD factors. Semin. Cell Dev. Biol. 18, 743–750 (2007).

    CAS  PubMed  Google Scholar 

  81. Hosokawa, N. et al. A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2, 415–422 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Oda, Y., Hosokawa, N., Wada, I. & Nagata, K. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299, 1394–1397 (2003).

    CAS  PubMed  Google Scholar 

  83. Molinari, M., Calanca, V., Galli, C., Lucca, P. & Paganetti, P. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299, 1397–1400 (2003). Together with reference 82, the role of the ER degradation enhancing mannosidase-like lectin, EDEM, was defined in mammalian cells. EDEM was shown to have a key role during the recognition and targeting of ERAD substrates in the ER.

    CAS  PubMed  Google Scholar 

  84. Mast, S. W. et al. Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15, 421–436 (2005).

    CAS  PubMed  Google Scholar 

  85. Olivari, S., Galli, C., Alanen, H., Ruddock, L. & Molinari, M. A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J. Biol. Chem. 280, 2424–2428 (2005).

    CAS  PubMed  Google Scholar 

  86. Hirao, K. et al. EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J. Biol. Chem. 281, 9650–9658 (2006).

    CAS  PubMed  Google Scholar 

  87. Buschhorn, B. A., Kostova, Z., Medicherla, B. & Wolf, D. H. A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett. 577, 422–426 (2004).

    CAS  PubMed  Google Scholar 

  88. Bhamidipati, A., Denic, V., Quan, E. M. & Weissman, J. S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19, 741–751 (2005).

    CAS  PubMed  Google Scholar 

  89. Kim, W., Spear, E. D. & Ng, D. T. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19, 753–764 (2005).

    CAS  PubMed  Google Scholar 

  90. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P. & Jakob, C. A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19, 765–775 (2005).

    CAS  PubMed  Google Scholar 

  91. Gauss, R., Jarosch, E., Sommer, T. & Hirsch, C. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nature Cell Biol. 8, 849–854 (2006).

    CAS  PubMed  Google Scholar 

  92. Christianson, J. C., Shaler, T. A., Tyler, R. E. & Kopito, R. R. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biol. 10, 272–282 (2008).

    CAS  PubMed  Google Scholar 

  93. Hosokawa, N. et al. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1–SEL1L ubiquitin ligase complex and BiP. J. Biol. Chem. 283, 20914–20924 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Arteaga, M. F., Wang, L., Ravid, T., Hochstrasser, M. & Canessa, C. M. An amphipathic helix targets serum and glucocorticoid-induced kinase 1 to the endoplasmic reticulum-associated ubiquitin-conjugation machinery. Proc. Natl Acad. Sci. USA 103, 11178–11183 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Deng, M. & Hochstrasser, M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443, 827–831 (2006).

    CAS  PubMed  Google Scholar 

  96. Park, S. H. et al. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin–proteasome system. Mol. Biol. Cell 18, 153–165 (2007).

    PubMed  PubMed Central  Google Scholar 

  97. Schmitz, A., Herrgen, H., Winkeler, A. & Herzog, V. Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell Biol. 148, 1203–1212 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Plemper, R. K., Bohmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388, 891–895 (1997).

    CAS  PubMed  Google Scholar 

  99. Pilon, M., Schekman, R. & Romisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540–4548 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kalies, K. U., Allan, S., Sergeyenko, T., Kroger, H. & Romisch, K. The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. EMBO J. 24, 2284–2293 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Scott, D. C. & Schekman, R. Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J. Cell Biol. 181, 1095–1105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    CAS  PubMed  Google Scholar 

  103. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    CAS  PubMed  Google Scholar 

  104. Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129, 943–955 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ravid, T., Kreft, S. G. & Hochstrasser, M. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J. 25, 533–543 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kostova, Z., Tsai, Y. C. & Weissman, A. M. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin. Cell Dev. Biol. 18, 770–779 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ploegh, H. L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435–438 (2007).

    CAS  PubMed  Google Scholar 

  108. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    CAS  PubMed  Google Scholar 

  109. Kohlmann, S., Schafer, A. & Wolf, D. H. Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation. J. Biol. Chem. 283, 16374–16383 (2008).

    CAS  PubMed  Google Scholar 

  110. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002).

    CAS  PubMed  Google Scholar 

  111. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).

    CAS  PubMed  Google Scholar 

  112. Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1809 (1997).

    CAS  PubMed  Google Scholar 

  113. Haynes, C. M., Caldwell, S. & Cooper, A. A. An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER–Golgi transport. J. Cell Biol. 158, 91–101 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kikkert, M. et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 279, 3525–3534 (2004).

    CAS  PubMed  Google Scholar 

  115. Hassink, G. et al. TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochem. J. 388, 647–655 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002).

    CAS  PubMed  Google Scholar 

  117. Younger, J. M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    CAS  PubMed  Google Scholar 

  118. Morito, D. et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRΔF508. Mol. Biol. Cell 19, 1328–1336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhong, X. et al. AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J. Biol. Chem. 279, 45676–45684 (2004).

    CAS  PubMed  Google Scholar 

  120. Imai, Y. et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891–902 (2001).

    CAS  PubMed  Google Scholar 

  121. Imai, Y. et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol. Cell 10, 55–67 (2002).

    CAS  PubMed  Google Scholar 

  122. Mayer, T. U., Braun, T. & Jentsch, S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J. 17, 3251–3257 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, R. J. et al. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J. 23, 2206–2215 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Jentsch, S. & Rumpf, S. Cdc48 (p97): a 'molecular gearbox' in the ubiquitin pathway? Trends Biochem. Sci. 32, 6–11 (2007).

    CAS  PubMed  Google Scholar 

  125. Neuber, O., Jarosch, E., Volkwein, C., Walter, J. & Sommer, T. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nature Cell Biol. 7, 993–998 (2005).

    CAS  PubMed  Google Scholar 

  126. Schuberth, C. & Buchberger, A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nature Cell Biol. 7, 999–1006 (2005).

    CAS  PubMed  Google Scholar 

  127. Flierman, D., Ye, Y., Dai, M., Chau, V. & Rapoport, T. A. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. J. Biol. Chem. 278, 34774–34782 (2003).

    CAS  PubMed  Google Scholar 

  128. Carlson, E. J., Pitonzo, D. & Skach, W. R. p97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation. EMBO J. 25, 4557–4566 (2006). Using a novel in vitro system, this study showed that the p97 (Cdc48) complex reliance on ERAD correlates with the membrane stability of the substrate.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Raasi, S. & Wolf, D. H. Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin. Cell Dev. Biol. 18, 780–791 (2007).

    CAS  PubMed  Google Scholar 

  131. Medicherla, B., Kostova, Z., Schaefer, A. & Wolf, D. H. A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep. 5, 692–697 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, G., Zhao, G., Zhou, X., Schindelin, H. & Lennarz, W. J. The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proc. Natl Acad. Sci. USA 103, 8348–8353 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim, I. et al. The Png1–Rad23 complex regulates glycoprotein turnover. J. Cell Biol. 172, 211–219 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rivett, A. J. Proteasomes: multicatalytic proteinase complexes. Biochem. J. 291, 1–10 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    CAS  PubMed  Google Scholar 

  137. Wang, Q., Li, L. & Ye, Y. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J. Cell Biol. 174, 963–971 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Casagrande, R. et al. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell 5, 729–735 (2000).

    CAS  PubMed  Google Scholar 

  139. Ng, D. T., Spear, E. D. & Walter, P. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell Biol. 150, 77–88 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biol. 2, 379–384 (2000).

    CAS  PubMed  Google Scholar 

  141. Kimata, Y. et al. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J. Cell Biol. 179, 75–86 (2007). The induction of the unfolded protein response in yeast was found to require the clustering of Ire1, the UPR sensor, regulation by BiP and probably the direct binding of Ire1 to unfolded polypeptides.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  143. Nair, U. & Klionsky, D. J. Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J. Biol. Chem. 280, 41785–41788 (2005).

    CAS  PubMed  Google Scholar 

  144. Perlmutter, D. H. The role of autophagy in α-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2, 258–263 (2006).

    CAS  PubMed  Google Scholar 

  145. Kamimoto, T. et al. Intracellular inclusions containing mutant α1-antitrypsin Z are propagated in the absence of autophagic activity. J. Biol. Chem. 281, 4467–4476 (2006).

    CAS  PubMed  Google Scholar 

  146. Kruse, K. B., Brodsky, J. L. & McCracken, A. A. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human α-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol. Biol. Cell 17, 203–212 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kelly, S. M., Vanslyke, J. K. & Musil, L. S. Regulation of ubiquitin–proteasome system mediated degradation by cytosolic stress. Mol. Biol. Cell 18, 4279–4291 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, Y. & Chang, A. Heat shock response relieves ER stress. EMBO J. 27, 1049–1059 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    CAS  PubMed  Google Scholar 

  150. Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935–13940 (2001).

    CAS  PubMed  Google Scholar 

  151. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    CAS  PubMed  Google Scholar 

  152. Nishitoh, H. et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell 2, 389–395 (1998).

    CAS  PubMed  Google Scholar 

  153. Barone, M. V., Crozat, A., Tabaee, A., Philipson, L. & Ron, D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8, 453–464 (1994).

    CAS  PubMed  Google Scholar 

  154. Rao, R. V., Ellerby, H. M. & Bredesen, D. E. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 11, 372–380 (2004).

    CAS  PubMed  Google Scholar 

  155. Kincaid, M. M. & Cooper, A. A. Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. Mol. Biol. Cell 18, 455–463 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wiseman, R. L., Powers, E. T., Buxbaum, J. N., Kelly, J. W. & Balch, W. E. An adaptable standard for protein export from the endoplasmic reticulum. Cell 131, 809–821 (2007).

    CAS  PubMed  Google Scholar 

  157. van Anken, E. & Braakman, I. Endoplasmic reticulum stress and the making of a professional secretory cell. Crit. Rev. Biochem. Mol. Biol. 40, 269–283 (2005).

    PubMed  Google Scholar 

  158. Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of J.L.B. on ERAD is supported by grants from the National Institutes of Health and the Cystic Fibrosis Foundation. We thank K. Nakatsukasa for insightful discussions and comments on the manuscript, and we apologize to those researchers whose publications we could not include owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Brodsky.

Related links

Related links

DATABASES

OMIM

Alzheimer's

cystic fibrosis

Huntington's

Parkinson's

FURTHER INFORMATION

Jeffrey L. Brodsky's homepage

Glossary

Lectin-like domain

Lectins are sugar-binding proteins that either bind to soluble carbohydrate molecules or to carbohydrate moieties in glycoproteins. Lectin-like domains are found in a wide range of proteins that are involved in protein–protein, protein–lipid and protein–nucleic acid interactions.

Thioredoxin-like

Thioredoxins are disulphide-containing proteins that regulate the redox status of the cell and have a role in diverse oxidative cellular processes. The thioredoxin-like domain typically adopts a two- or three-layer β-sandwich structure and contains a conserved Cys-X-X-Cys active-site motif.

UBL domain

(Ubiquitin-like domain). A non-enzymatic domain that resembles ubiquitin in structure. UBL domain-containing proteins might have a role in the recruitment of ubiquitylated substrates to the 26S proteasome.

RING domain

A Cys-rich tandem zinc-finger domain of 40–60 amino acids that is found in the RING E3 enzymes, a main class of E3 ubiquitin ligases.

HECT domain

(Homologous to E6AP C terminus domain). A domain in the second largest class of E3 ubiquitin ligases. In contrast to RING ligases, HECT-domain ligases form an essential thioester intermediate with ubiquitin as it is transferred from the E2 enzyme to the substrate.

SCF E3 complex

(S-phase-kinase-associated protein-1 (SKP1)–cullin–F-box E3 complex). The third largest class of E3 ubiquitin ligases. The cullin component of the SCF complex forms a scaffold and organizes substrate receptor and E2 recruitment modules at its N and C termini, respectively. Substrates are recruited to cullin by SKP1 and various F-box proteins, which regulate substrate specificity.

AAA+ ATPase

(ATPases associated with diverse cellular activities). An ATP-hydrolyzing enzyme that contains one or two conserved ATP-binding domains, which are in turn comprised of conserved A and B motifs. AAA+ ATPases assemble into oligomeric assemblies (often hexamers) that form a ring-shaped structure with a central pore.

UBX domian

(Ubiquitin-regulatory 'X' domain). An 80 amino-acid domain that is found at the C terminus of ubiquitin-regulatory proteins. The UBX domain is a general CDC48-interaction module.

UBA domain

(Ubiquitin-association domain). A domain of 45 amino acids that adopts a structure comprised of a three α-helical bundle. The domain binds to ubiquitin through a conserved hydrophobic surface patch.

Autophagosome

A double-membrane vesicle that is formed from elements of the cytoplasm and other organelles; it fuses with the vacuole or lysosome, in which the autophagosomal contents are subject to degradation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vembar, S., Brodsky, J. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9, 944–957 (2008). https://doi.org/10.1038/nrm2546

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing