Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Turning anti-ageing genes against cancer

Abstract

Recent studies in diverse organisms implicate proto-oncogenic pathways, including insulin-like growth factor-I (IGF-I), Ras and AKT/protein kinase B in the ageing process. Although IGF-I is thought to contribute to cancer by promoting growth and preventing apoptosis, evidence from model organisms suggests that proto-oncogene homologues might contribute to the DNA mutations and chromosomal damage that are observed in tumour cells by increasing DNA damage, in both dividing and non-dividing cells, and involving error-prone systems in DNA repair. This raises the possibility that cancer can be reduced by chronic downregulation of pro-ageing pathways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A model for normal and oncogenic IGF-I, Ras and AKT/PKB in promoting DNA mutations.
Figure 2: IGF-I signalling, ageing and cancer.

References

  1. 1

    Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  2. 2

    Longo, V. D. & Finch, C. E. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299, 1342–1346 (2003).

    Article  PubMed Central  Google Scholar 

  3. 3

    Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Lieber, M. R. & Karanjawala, Z. E. Ageing, repetitive genomes and DNA damage. Nature Rev. Mol. Cell Biol. 5, 69–75 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Hasty, P., Campisi, J., Hoeijmakers, J., vanSteeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  7. 7

    Vijg, J. Aging of the Genome. (Oxford University Press, Oxford, 2007).

    Book  Google Scholar 

  8. 8

    Rodriguez-Viciana, P. et al. Cancer targets in the Ras pathway. Cold Spring Harb. Symp. Quant. Biol. 70, 461–467 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  9. 9

    Toker, A. & Yoeli-Lerner, M. Akt signaling and cancer: surviving but not moving on. Cancer Res. 66, 3963–3966 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  10. 10

    Pollak, M. N., Schernhammer, E. S. & Hankinson, S. E. Insulin-like growth factors and neoplasia. Nature Rev. Cancer 4, 505–518 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Busuttil, R. A. et al. Intra-organ variation in age-related mutation accumulation in the mouse. PLoS ONE 2, e876 (2007).

    Article  PubMed Central  Google Scholar 

  12. 12

    Fabrizio, P. et al. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J. Cell Biol. 166, 1055–1067 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  13. 13

    Longo, V. D., Liou, L. L., Valentine, J. S. & Gralla, E. B. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch. Biochem. Biophys. 365, 131–142 (1999).

    CAS  Article  PubMed Central  Google Scholar 

  14. 14

    Busuttil, R. A. et al. Organ specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res. 65, 11271–11275 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  15. 15

    Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  16. 16

    Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Greenblatt, M. S., Bennett, W. P., Hollstein, M. & Harris, C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Imam, S. Z., Karahalil, B., Hogue, B. A., Souza-Pinto, N. C. & Bohr, V. A. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiol. Aging 27, 1129–1136 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  19. 19

    Madia, F. et al. Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J. Cell Biol. 180, 67–81 (2008).

    CAS  Article  PubMed Central  Google Scholar 

  20. 20

    Kovtun, I. V. et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447, 447–452 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Issa, J. P. Aging, DNA methylation and cancer. Crit. Rev. Oncol. Hematol. 32, 31–43 (1999).

    CAS  Article  PubMed Central  Google Scholar 

  22. 22

    Fabrizio, P. & Longo, V. D. The chronological life span of Saccharomyces cerevisiae. Aging Cell 2, 73–81 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  23. 23

    Madia, F., Gattazzo, C., Fabrizio, P. & Longo, V. D. A simple model system for age-dependent DNA damage and cancer. Mech. Ageing Dev. 128, 45–49 (2007).

    CAS  Article  PubMed Central  Google Scholar 

  24. 24

    Fabrizio, P. et al. Sir2 blocks extreme life-span extension. Cell 123, 655–667 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Chen, C., Umezu, K. & Kolodner, R. D. Chromosomal rearrangements occur in S. cerevisiae rfa 1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9–22 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Fabrizio, P. et al. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35–46 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Hlavata, L., Aguilaniu, H., Pichova, A. & Nystrom, T. The oncogenic RAS2val19 mutation locks respiration, independently of PKA, in a mode prone to generate ROS. EMBO J. 22, 3337–3345 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  28. 28

    Huang, M. E., Rio, A. G., Nicolas, A. & Kolodner, R. D. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl Acad. Sci. USA 100, 11529–11534 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  29. 29

    Sinclair, D. A., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313–1316 (1997).

    CAS  Article  PubMed Central  Google Scholar 

  30. 30

    Weindruch, R. & and Walford, R. The Retardation of Aging and Disease by Dietary Restriction (Charles C. Thomas, Springfield, Illinois, 1988).

    Google Scholar 

  31. 31

    Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Denko, N. C., Giaccia, A. J., Stringer, J. R. & Stambrook, P. J. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc. Natl Acad. Sci. USA 91, 5124–5128 (1994).

    CAS  Article  PubMed Central  Google Scholar 

  33. 33

    Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Pinkston-Gosse, J. & Kenyon, C. DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nature Genet. 39, 1403–1409 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

    CAS  Article  Google Scholar 

  37. 37

    LaFever, L. & Drummond-Barbosa, D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309, 1071–1073 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  38. 38

    Kramer, J. M., Davidge, J. T., Lockyer, J. M. & Staveley, B. E. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev. Biol. 3, 5 (2003).

    Article  PubMed Central  Google Scholar 

  39. 39

    Igaki, T., Pagliarini, R. A. & Xu, T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr. Biol. 16, 1139–1146 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  40. 40

    Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Flurkey, K., Papaconstantinou, J. & Harrison, D. E. The Snell dwarf mutation Pit1dw can increase life span in mice. Mech. Ageing Dev. 123, 121–130 (2002).

    CAS  Article  PubMed Central  Google Scholar 

  42. 42

    Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    CAS  Article  PubMed Central  Google Scholar 

  43. 43

    Coschigano, K. T., Clemmons, D., Bellush, L. L. & Kopchick, J. J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Plowman, S. J. et al. The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice. Exp. Cell Res. 312, 16–26 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  47. 47

    Ikeno, Y., Bronson, R. T., Hubbard, G. B., Lee, S. & Bartke, A. Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J. Gerontol. A Biol. Sci. Med. Sci. 58, 291–296 (2003).

    Article  PubMed Central  Google Scholar 

  48. 48

    Vergara, M., Smith-Wheelock, M., Harper, J. M., Sigler, R. & Miller, R. A. Hormone-treated Snell dwarf mice regain fertility but remain long lived and disease resistant. J. Gerontol. A Biol. Sci. Med. Sci. 59, 1244–1250 (2004).

    Article  PubMed Central  Google Scholar 

  49. 49

    Salmon, A. B. et al. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am. J. Physiol. Endocrinol. Metab. 289, E23–E29 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  50. 50

    Kennedy, M. A., Rakoczy, S. G. & Brown-Borg, H. M. Long-living Ames dwarf mouse hepatocytes readily undergo apoptosis. Exp. Gerontol. 38, 997–1008 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  51. 51

    Dunn, S. E. et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 57, 4667–4672 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Suh, Y. et al. Aging alters the apoptotic response to genotoxic stress. Nature Med. 8, 3–4 (2002).

    CAS  Article  PubMed Central  Google Scholar 

  53. 53

    Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  54. 54

    Levine, A. J., Feng, Z., Mak, T. W., You, H. & Jin, S. Coordination and communication between the p53 and IGF-1–AKT–TOR signal transduction pathways. Genes Dev. 20, 267–275 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  55. 55

    Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  56. 56

    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    CAS  Article  PubMed Central  Google Scholar 

  57. 57

    Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  58. 58

    Wijnhoven, S. W. et al. Accelerated aging pathology in ad libitum fed XpdTTD mice is accompanied by features suggestive of caloric restriction. DNA Repair (Amst.) 4, 1314–1324 (2005).

    CAS  Article  Google Scholar 

  59. 59

    Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  60. 60

    Vijg, J. & Suh, Y. Ageing: chromatin unbound. Nature 440, 874–875 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  61. 61

    Pluijm, S. M. et al. Unhealthy lifestyles during the life course: association with physical decline in late life. Aging Clin. Exp. Res. 19, 75–83 (2007).

    Article  PubMed Central  Google Scholar 

  62. 62

    Renehan, A. G. et al. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363, 1346–1353 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  63. 63

    Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008).

    CAS  Article  Google Scholar 

  64. 64

    Rudman, D. et al. Effects of human growth hormone in men over 60 years old. N. Engl. J. Med. 323, 1–6 (1990).

    CAS  Article  PubMed Central  Google Scholar 

  65. 65

    Laughlin, G. A., Barrett-Connor, E., Criqui, M. H. & Kritz-Silverstein, D. The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo Study. J. Clin. Endocrinol. Metab. 89, 114–120 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  66. 66

    Krzisnik C. K. Z., Battelino T., Brown M., Parks J. S. & Laron Z. The “little people” of the island of Krk — revisited. Etiology of hypopituitarism revealed. J. Endocr. Genet. 1, 9–19 (1999).

    Google Scholar 

  67. 67

    Hursting, S. D., Lavigne, J. A., Berrigan, D., Perkins, S. N. & Barrett, J. C. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu. Rev. Med. 54, 131–152 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  68. 68

    Hertweck, M., Gobel, C. & Baumeister, R. C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev. Cell 6, 577–588 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  69. 69

    Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).

    CAS  Article  PubMed Central  Google Scholar 

  70. 70

    Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  71. 71

    Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    CAS  Article  Google Scholar 

  72. 72

    Longo, V. The chronological life span of Saccharomyces cerevisiae. Studies of superoxide dismutase, Ras and Bcl-2. Thesis, Univ. California Los Angeles (1997).

    Google Scholar 

  73. 73

    Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    CAS  Article  Google Scholar 

  74. 74

    Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    CAS  Article  Google Scholar 

  75. 75

    Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999).

    CAS  Article  Google Scholar 

  76. 76

    Urban, J. et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663–674 (2007).

    CAS  Article  PubMed Central  Google Scholar 

  77. 77

    Longo, V. D., Gralla, E. B. & Valentine, J. S. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J. Biol. Chem. 271, 12275–12280 (1996).

    CAS  Article  PubMed Central  Google Scholar 

  78. 78

    Wei, M. et al. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 4, e13 (2008).

    Article  PubMed Central  Google Scholar 

  79. 79

    Partridge, L. & Gems, D. Benchmarks for ageing studies. Nature 450, 165–167 (2007).

    CAS  Article  PubMed Central  Google Scholar 

  80. 80

    Pfeifer, GP. p53 mutational spectra and the role of methylated CpG sequences. Mutat. Res. 450, 155–166 (2000).

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Related work in the laboratory of V.D.L. has been supported by an American Federation for Aging Research (AFAR) grant, by National Institutes of Health (NIH) grant AG20642 and AG025135, and by a Norris Cancer Center pilot grant. Related work has been supported by AG17242, AG20438, ES11044 and Ellison grant AG-SS-1496-05 in the laboratory of J.V. and by NIH grant CA100504 in the laboratory of M.R.L.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valter D. Longo.

Related links

Related links

DATABASES

OMIM

Bloom

Laron

Werner

FURTHER INFORMATION

Valter D. Longo's homepage

Michael R. Lieber's homepage

Jan Vijg's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Longo, V., Lieber, M. & Vijg, J. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol 9, 903–910 (2008). https://doi.org/10.1038/nrm2526

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing