Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple roles for lipids in the Hedgehog signalling pathway

Key Points

  • Secretion of cholesterol-modified and palmitate-modified Hedgehog (Hh) might occur through the formation of multimers or by association with lipoproteins. Secretion is an active process that depends on the 12-transmembrane-domain protein Dispatched, a member of the resistance-nodulation division (RND) family of proton-driven transporters.

  • Hh signals by binding to Patched, another RND family member, and by preventing Patched repression of the G-protein-coupled receptor Smoothened. Smoothened activity is likely to be regulated by the binding of one or more small lipophilic molecules: candidates include vitamin D3 and several oxysterols.

  • Patched might repress Smoothened by regulating the availability or synthesis of small lipophilic Smoothened inhibitors.

  • Intracellular cholesterol transport is tightly regulated and the biosynthesis of different cholesterol derivatives occurs at specific subcellular locations. The similarity of Patched to the cholesterol-mobilizing transporter NPC1 suggests that it might be involved in intracellular trafficking of cholesterol or its derivatives.

Abstract

The identification of endogenous sterol derivatives that modulate the Hedgehog (Hh) signalling pathway has begun to suggest testable hypotheses for the cellular biological functions of Patched, and for the lipoprotein association of Hh. Progress in the field of intracellular sterol trafficking has emphasized how tightly the distribution of intracellular sterol is controlled, and suggests that the synthesis of sterol derivatives can be influenced by specific sterol-delivery pathways. The combination of this field with Hh studies will rapidly give us a more sophisticated understanding of both the Hh signal-transduction pathway and the cell biology of sterol metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed vehicles for Hedgehog release.
Figure 2: The structures of sterol-related molecules.
Figure 3: Intracellular transport of sterols and sterol derivatives.
Figure 4: Possible models for Patched-mediated Smoothened repression.

Similar content being viewed by others

References

  1. van den Brink, G. R. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol. Rev. 87, 1343–1375 (2007).

    CAS  PubMed  Google Scholar 

  2. Palma, V. et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132, 335–344 (2005).

    CAS  PubMed  Google Scholar 

  3. Crompton, T., Outram, S. V. & Hager-Theodorides, A. L. Sonic hedgehog signalling in T-cell development and activation. Nature Rev. Immunol. 7, 726–735 (2007).

    CAS  Google Scholar 

  4. Cooper, M. K. et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nature Genet. 33, 508–513 (2003).

    CAS  PubMed  Google Scholar 

  5. Ming, J. E., Roessler, E. & Muenke, M. Human developmental disorders and the Sonic hedgehog pathway. Mol. Med. Today 4, 343–349 (1998).

    CAS  PubMed  Google Scholar 

  6. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    CAS  PubMed  Google Scholar 

  7. Datta, S. & Datta, M. W. Sonic Hedgehog signaling in advanced prostate cancer. Cell. Mol. Life Sci. 63, 435–448 (2006).

    CAS  PubMed  Google Scholar 

  8. Wetmore, C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr. Opin. Genet. Dev. 13, 34–42 (2003).

    CAS  PubMed  Google Scholar 

  9. Ruizi Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer 2, 361–372 (2002).

    CAS  Google Scholar 

  10. Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    CAS  PubMed  Google Scholar 

  11. Porter, J. A. et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21–34 (1996).

    CAS  PubMed  Google Scholar 

  12. Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    CAS  PubMed  Google Scholar 

  13. Chamoun, Z. et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293, 2080–2084 (2001).

    CAS  PubMed  Google Scholar 

  14. Amanai, K. & Jiang, J. Distinct roles of Central missing and Dispatched in sending the Hedgehog signal. Development 128, 5119–5127 (2001).

    CAS  PubMed  Google Scholar 

  15. Lee, J. D. & Treisman, J. E. Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr. Biol. 11, 1147–1152 (2001).

    CAS  PubMed  Google Scholar 

  16. Micchelli, C. A., The, I., Selva, E., Mogila, V. & Perrimon, N. Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 129, 843–851 (2002).

    CAS  PubMed  Google Scholar 

  17. Gallet, A., Rodriguez, R., Ruel, L. & Therond, P. P. Cholesterol modification of Hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to Hedgehog. Dev. Cell 4, 191–204 (2003).

    CAS  PubMed  Google Scholar 

  18. Gallet, A., Ruel, L., Staccini-Lavenant, L. & Therond, P. P. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 133, 407–418 (2006). Shows that cholesterol modification of Hh is required for its long-range signalling activity and for its incorporation into high molecular weight multimers in vivo.

    CAS  PubMed  Google Scholar 

  19. Chen, M. H., Li, Y. J., Kawakami, T., Xu, S. M. & Chuang, P. T. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev. 18, 641–659 (2004). Shows that lipid modification of Sonic Hh is necessary for incorporation into high molecular weight multimeric complexes and that incorporation into these complexes promotes Hh signalling activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, J. D. et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233, 122–136 (2001).

    CAS  PubMed  Google Scholar 

  21. Rietveld, A., Neutz, S., Simons, K. & Eaton, S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274, 12049–12054 (1999).

    CAS  PubMed  Google Scholar 

  22. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    CAS  PubMed  Google Scholar 

  23. Feng, J. et al. Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids. Development 131, 4357–4370 (2004).

    CAS  PubMed  Google Scholar 

  24. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99, 803–815 (1999).

    CAS  PubMed  Google Scholar 

  25. Ma, Y. et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111, 63–75 (2002).

    CAS  PubMed  Google Scholar 

  26. Piddock, L. J. Multidrug-resistance efflux pumps — not just for resistance. Nature Rev. Microbiol. 4, 629–636 (2006).

    CAS  Google Scholar 

  27. Chang, T. Y., Chang, C. C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006).

    CAS  PubMed  Google Scholar 

  28. Zeng, X. et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411, 716–720 (2001).

    CAS  PubMed  Google Scholar 

  29. Callejo, A., Torroja, C., Quijada, L. & Guerrero, I. Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix. Development 133, 471–483 (2006).

    CAS  PubMed  Google Scholar 

  30. Panáková, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles carry lipid-linked proteins and are required for long-range Hedgehog and Wingless signalling. Nature 435, 58–65 (2005). Shows that D. melanogaster Wingless, Hh and several GPI-linked proteins bind to lipoprotein particles. RNA-mediated knockdown of Lipophorin reduces the range of both Wingless and Hh signalling.

    PubMed  Google Scholar 

  31. van der Horst, D. J., van Hoof, D., van Marrewijk, W. J. & Rodenburg, K. W. Alternative lipid mobilization: the insect shuttle system. Mol. Cell Biochem. 239, 113–119 (2002).

    CAS  PubMed  Google Scholar 

  32. Arrese, E. L. et al. Lipid storage and mobilization in insects: current status and future directions. Insect Biochem. Mol. Biol. 31, 7–17 (2001).

    CAS  PubMed  Google Scholar 

  33. Kutty, R. K. et al. Molecular characterization and developmental expression of a retinoid- and fatty acid-binding glycoprotein from Drosophila. A putative lipophorin. J. Biol. Chem. 271, 20641–20649 (1996).

    CAS  PubMed  Google Scholar 

  34. Babin, P. J., Bogerd, J., Kooiman, F. P., Van Marrewijk, W. J. & Van der Horst, D. J. Apolipophorin II/I, apolipoprotein B, vitellogenin, and microsomal triglyceride transfer protein genes are derived from a common ancestor. J. Mol. Evol. 49, 150–160 (1999).

    CAS  PubMed  Google Scholar 

  35. Eugster, C., Panakova, D., Mahmoud, A. & Eaton, S. Lipoprotein–heparan sulfate interactions in the Hedgehog pathway. Dev. Cell 13, 57–71 (2007).

    CAS  PubMed  Google Scholar 

  36. Li, Y., Zhang, H., Litingtung, Y. & Chiang, C. Cholesterol modification restricts the spread of Shh gradient in the limb bud. Proc. Natl Acad. Sci. USA 103, 6548–6553 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. The, I., Bellaiche, Y. & Perrimon, N. Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639 (1999).

    CAS  PubMed  Google Scholar 

  38. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A. & Tabata, T. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82 (2004).

    CAS  PubMed  Google Scholar 

  39. Han, C., Belenkaya, T. Y., Wang, B. & Lin, X. Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 131, 601–611 (2004).

    CAS  PubMed  Google Scholar 

  40. Taipale, J., Cooper, M. K., Maiti, T. & Beachy, P. A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002).

    CAS  PubMed  Google Scholar 

  41. Chen, J. K., Taipale, J., Cooper, M. K. & Beachy, P. A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    CAS  PubMed  Google Scholar 

  43. Incardona, J. P., Gaffield, W., Kapur, R. P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125, 3553–3562 (1998).

    CAS  PubMed  Google Scholar 

  44. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    PubMed  PubMed Central  Google Scholar 

  45. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Strutt, H. et al. Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Curr. Biol. 11, 608–613 (2001).

    CAS  PubMed  Google Scholar 

  47. Paulsen, I. T., Brown, M. H. & Skurray, R. A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60, 575–608 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelley, R. I. & Herman, G. E. Inborn errors of sterol biosynthesis. Annu. Rev. Genomics Hum. Genet. 2, 299–341 (2001).

    CAS  PubMed  Google Scholar 

  49. Porter, F. D. Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr. Opin. Pediatr. 15, 607–613 (2003).

    PubMed  Google Scholar 

  50. Tadjuidje, E. & Hollemann, T. Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development. Dev. Dyn. 235, 2095–2110 (2006).

    CAS  PubMed  Google Scholar 

  51. Engelking, L. J. et al. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin. J. Clin. Invest. 116, 2356–2365 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wassif, C. A. et al. Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith–Lemli–Opitz syndrome. Hum. Mol. Genet. 10, 555–564 (2001).

    CAS  PubMed  Google Scholar 

  53. Bijlsma, M. F. et al. Repression of smoothened by patched-dependent (pro-) vitamin D3 secretion. PLoS Biol. 4, e232 (2006). Shows that adding pro-vitamin D 3 inhibits Hh signalling in tissue-culture cells and in zebrafish embryos.

    PubMed  PubMed Central  Google Scholar 

  54. DeLuca, H. F. & Schnoes, H. K. Metabolism and mechanism of action of vitamin D. Annu. Rev. Biochem. 45, 631–666 (1976).

    CAS  PubMed  Google Scholar 

  55. Haddad, J. G., Matsuoka, L. Y., Hollis, B. W., Hu, Y. Z. & Wortsman, J. Human plasma transport of vitamin D after its endogenous synthesis. J. Clin. Invest. 91, 2552–2555 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dusso, A. S., Brown, A. J. & Slatopolsky, E. Vitamin D. Am. J. Physiol. Renal Physiol. 289, F8–F28 (2005).

    CAS  PubMed  Google Scholar 

  57. Zugmaier, G. et al. Growth-inhibitory effects of vitamin D analogues and retinoids on human pancreatic cancer cells. Br. J. Cancer 73, 1341–1346 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Colston, K. W., James, S. Y., Ofori-Kuragu, E. A., Binderup, L. & Grant, A. G. Vitamin D receptors and anti-proliferative effects of vitamin D derivatives in human pancreatic carcinoma cells in vivo and in vitro. Br. J. Cancer 76, 1017–1020 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Narvaez, C. J., Zinser, G. & Welsh, J. Functions of 1α,25-dihydroxyvitamin D3 in mammary gland: from normal development to breast cancer. Steroids 66, 301–308 (2001).

    CAS  PubMed  Google Scholar 

  60. Beer, T. M. & Myrthue, A. Calcitriol in the treatment of prostate cancer. Anticancer Res. 26, 2647–2651 (2006).

    CAS  PubMed  Google Scholar 

  61. Kha, H. T. et al. Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J. Bone Miner. Res. 19, 830–840 (2004).

    CAS  PubMed  Google Scholar 

  62. Dwyer, J. R. et al. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem. 282, 8959–8968 (2007). Shows that oxysterols act through the Hh pathway at or above the level of Smoothened to exert their bone-promoting effects.

    CAS  PubMed  Google Scholar 

  63. Corcoran, R. B. & Scott, M. P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl Acad. Sci. USA 103, 8408–8413 (2006). Reports that both Hh signalling and proliferation in a medulloblastoma cell line require cholesterol biosynthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    CAS  PubMed  Google Scholar 

  65. Frolov, A. et al. NPC1 and NPC2 regulate cellular cholesterol homeostasis through generation of low density lipoprotein cholesterol-derived oxysterols. J. Biol. Chem. 278, 25517–25525 (2003).

    CAS  PubMed  Google Scholar 

  66. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007). Shows that Patched localizes to primary cilia and prevents the accumulation of Smoothened. Addition of Sonic Hh removes Patched from the cilium and allows Smoothened accumulation.

    CAS  PubMed  Google Scholar 

  67. Peet, D. J., Janowski, B. A. & Mangelsdorf, D. J. The LXRs: a new class of oxysterol receptors. Curr. Opin. Genet. Dev. 8, 571–575 (1998).

    CAS  PubMed  Google Scholar 

  68. Fairn, G. D. & McMaster, C. R. Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell. Mol. Life Sci. 65, 228–236 (2007).

    Google Scholar 

  69. Olkkonen, V. M. et al. The OSBP-related proteins (ORPs): global sterol sensors for co-ordination of cellular lipid metabolism, membrane trafficking and signalling processes? Biochem. Soc. Trans. 34, 389–391 (2006).

    CAS  PubMed  Google Scholar 

  70. Radhakrishnan, A., Ikeda, Y., Kwon, H. J., Brown, M. S. & Goldstein, J. L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl Acad. Sci. USA 104, 6511–6518 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Soccio, R. E. & Breslow, J. L. Intracellular cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 24, 1150–1160 (2004).

    CAS  PubMed  Google Scholar 

  72. Ikonen, E. Cellular cholesterol trafficking and compartmentalization. Nature Rev. Mol. Cell Biol. 9, 125–138 (2008).

    CAS  Google Scholar 

  73. Russell, D. W. Oxysterol biosynthetic enzymes. Biochim. Biophys. Acta 1529, 126–135 (2000).

    CAS  PubMed  Google Scholar 

  74. Davies, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann–Pick C1 protein. Science 290, 2295–2298 (2000).

    CAS  PubMed  Google Scholar 

  75. Strauss, J. F., 3rd, Kishida, T., Christenson, L. K., Fujimoto, T. & Hiroi, H. START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol. Cell Endocrinol. 202, 59–65 (2003).

    CAS  PubMed  Google Scholar 

  76. Yang, H. Nonvesicular sterol transport: two protein families and a sterol sensor? Trends Cell Biol. 16, 427–432 (2006).

    CAS  PubMed  Google Scholar 

  77. Garver, W. S. & Heidenreich, R. A. The Niemann–Pick C proteins and trafficking of cholesterol through the late endosomal/lysosomal system. Curr. Mol. Med. 2, 485–505 (2002).

    CAS  PubMed  Google Scholar 

  78. Mukherjee, S. & Maxfield, F. R. Lipid and cholesterol trafficking in NPC. Biochim. Biophys. Acta 1685, 28–37 (2004).

    CAS  PubMed  Google Scholar 

  79. Chang, T. Y. et al. Niemann–Pick type C disease and intracellular cholesterol trafficking. J. Biol. Chem. 280, 20917–20920 (2005).

    CAS  PubMed  Google Scholar 

  80. Malerod, L., Juvet, L. K., Hanssen-Bauer, A., Eskild, W. & Berg, T. Oxysterol-activated LXRα/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem. Biophys. Res. Commun. 299, 916–923 (2002).

    CAS  PubMed  Google Scholar 

  81. Venkateswaran, A. et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc. Natl Acad. Sci. USA 97, 12097–12102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, X., Suyama, K., Buchanan, J., Zhu, A. J. & Scott, M. P. A Drosophila model of the Niemann–Pick type C lysosome storage disease: dnpc1a is required for molting and sterol homeostasis. Development 132, 5115–5124 (2005).

    CAS  PubMed  Google Scholar 

  83. Fluegel, M. L., Parker, T. J. & Pallanck, L. J. Mutations of a Drosophila NPC1 gene confer sterol and ecdysone metabolic defects. Genetics 172, 185–196 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, J., Brown, G., Ailion, M., Lee, S. & Thomas, J. H. NCR-1 and NCR-2, the C. elegans homologs of the human Niemann–Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development 131, 5741–5752 (2004).

    CAS  PubMed  Google Scholar 

  85. Griffin, L. D., Gong, W., Verot, L. & Mellon, S. H. Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nature Med. 10, 704–711 (2004).

    CAS  PubMed  Google Scholar 

  86. Xie, C., Richardson, J. A., Turley, S. D. & Dietschy, J. M. Cholesterol substrate pools and steroid hormone levels are normal in the face of mutational inactivation of NPC1 protein. J. Lipid Res. 47, 953–963 (2006).

    CAS  PubMed  Google Scholar 

  87. Azhar, S., Leers-Sucheta, S. & Reaven, E. Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and 'selective' pathway connection. Front. Biosci. 8, S998–S1029 (2003).

    PubMed  Google Scholar 

  88. Kraemer, F. B. Adrenal cholesterol utilization. Mol. Cell Endocrinol. 265–266, 42–45 (2007).

    PubMed  Google Scholar 

  89. Kraemer, F. B. et al. Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol. Endocrinol. 18, 549–557 (2004).

    CAS  PubMed  Google Scholar 

  90. Shen, W. J. et al. Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J. Biol. Chem. 278, 43870–43876 (2003).

    CAS  PubMed  Google Scholar 

  91. Li, H. et al. Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 143, 3333–3340 (2002).

    CAS  PubMed  Google Scholar 

  92. Willnow, T. E. & Nykjaer, A. Pathways for kidney-specific uptake of the steroid hormone 25-hydroxyvitamin D3 . Curr. Opin. Lipidol. 13, 255–260 (2002).

    CAS  PubMed  Google Scholar 

  93. Adams, J. S. et al. Novel regulators of vitamin D action and metabolism: Lessons learned at the Los Angeles zoo. J. Cell Biochem. 88, 308–314 (2003).

    CAS  PubMed  Google Scholar 

  94. Adams, J. S. et al. Response element binding proteins and intracellular vitamin D binding proteins: novel regulators of vitamin D trafficking, action and metabolism. J. Steroid Biochem. Mol. Biol. 89–90(1–5), 461–465 (2004).

    PubMed  Google Scholar 

  95. Wu, S. et al. Regulation of 1,25-dihydroxyvitamin D synthesis by intracellular vitamin D binding protein-1. Endocrinology 143, 4135 (2002).

    CAS  PubMed  Google Scholar 

  96. Wu, S. et al. Intracellular vitamin D binding proteins: novel facilitators of vitamin D-directed transactivation. Mol. Endocrinol. 14, 1387–1397 (2000).

    CAS  PubMed  Google Scholar 

  97. Incardona, J. P. et al. Cyclopamine inhibition of Sonic hedgehog signal transduction is not mediated through effects on cholesterol transport. Dev. Biol. 224, 440–452 (2000).

    CAS  PubMed  Google Scholar 

  98. McCarthy, R. A., Barth, J. L., Chintalapudi, M. R., Knaak, C. & Argraves, W. S. Megalin functions as an endocytic sonic hedgehog receptor. J. Biol. Chem. 277, 25660–25667 (2002).

    CAS  PubMed  Google Scholar 

  99. Morales, C. R. et al. Epithelial trafficking of Sonic hedgehog by megalin. J. Histochem. Cytochem. 54, 1115–1127 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Willnow, T. E. et al. Defective forebrain development in mice lacking gp330/megalin. Proc. Natl Acad. Sci. USA 93, 8460–8464 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tam, S. P., Mok, L., Chimini, G., Vasa, M. & Deeley, R. G. ABCA1 mediates high-affinity uptake of 25-hydroxycholesterol by membrane vesicles and rapid efflux of oxysterol by intact cells. Am. J. Physiol. Cell Physiol. 291, C490–C502 (2006).

    CAS  PubMed  Google Scholar 

  102. Denef, N., Neubuser, D., Perez, L. & Cohen, S. M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000).

    CAS  PubMed  Google Scholar 

  103. Zhu, A. J., Zheng, L., Suyama, K. & Scott, M. P. Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev. 17, 1240–1252 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Huangfu, D. & Anderson, K. V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl Acad. Sci. USA 102, 11325–11330 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, C., Williams, E. H., Guo, Y., Lum, L. & Beachy, P. A. Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc. Natl Acad. Sci. USA 101, 17900–17907 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Apionishev, S., Katanayeva, N. M., Marks, S. A., Kalderon, D. & Tomlinson, A. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nature Cell Biol. 7, 86–92 (2005).

    CAS  PubMed  Google Scholar 

  107. Zhao, Y., Tong, C. & Jiang, J. Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450, 252–258 (2007). In an elegant set of FRET experiments, the authors show that phosphorylation of a series of Ser residues in the Smoothened tail balances the positive charges on multiple adjacent Arg residues and changes tail conformation, leading to Smoothened dimerization and activation.

    CAS  PubMed  Google Scholar 

  108. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    CAS  PubMed  Google Scholar 

  109. Kalderon, D. The mechanism of hedgehog signal transduction. Biochem. Soc. Trans. 33, 1509–1512 (2005).

    CAS  PubMed  Google Scholar 

  110. Huangfu, D. & Anderson, K. V. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3–14 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to T. Kurzchalia and the members of my laboratory for critical comments on this work.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro

intein

OMIM

Smith–Lemli–Opitz syndrome

FURTHER INFORMATION

Suzanne Eaton's homepage

Glossary

Inteins

(Protein introns). Enzymatically active domains that splice themselves out of the precursor protein, ligating the protein fragments (the 'exteins') on either side. Inteins can also ligate exteins in trans as well as in cis, and this has been exploited to modify proteins in vitro.

Raft-lipid microdomains

Small phase-separated regions of the cell membranes that are rich in cholesterol and sphingolipids. Their affinity for specific transmembrane and lipid-linked proteins, and their ability to cluster to form higher order structures have been proposed to be important for the regulation of signalling and membrane trafficking.

Cleft palate

A craniofacial abnormality that results from failure to fuse the left and right palatal shelves at the midline during embryogenesis. It can be caused by several environmental and genetic factors, including defects in Sonic Hh signalling.

Dauer formation

When starved of nutrients, the nematode worm C. elegans progresses to a unique larval form called a dauer. Dauers are long-lived and resistant to environmental insults but do not reproduce. When conditions are favourable, dauer larvae re-enter reproductive development.

ABC transporter

The many different proteins of the ABC transporter family use ATP to transport small molecules across the plasma membrane. ABCA1 has an important function in reverse cholesterol transport — effluxing cellular cholesterol to HDL particles. ABCG5 and G8 efflux cholesterol and plant sterols out of gut cells and into the gut lumen, regulating dietary sterol uptake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, S. Multiple roles for lipids in the Hedgehog signalling pathway. Nat Rev Mol Cell Biol 9, 437–445 (2008). https://doi.org/10.1038/nrm2414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing