Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heterotrimeric G protein activation by G-protein-coupled receptors

Key Points

  • G-protein-coupled receptors (GPCRs) represent one of the largest and most diverse groups of proteins in the genome. Activated receptors catalyse nucleotide exchange on a relatively small group of heterotrimeric G proteins to initiate intracellular signalling.

  • Biophysical studies of rhodopsin-family GPCRs have shown that receptor activation results in an outward movement of transmembrane helix VI, which opens a pocket for G protein binding. Increasing evidence suggests that the structure, conformation and specificity of the G protein binding site can be regulated by the identity of the bound ligand.

  • Several different models for receptor–G-protein association have been proposed. These proteins may be precoupled in a large signalling complex. Nucleotide exchange may follow a series of transition complexes. Receptors may function as dimers to activate G proteins.

  • Biophysical studies indicate that receptor-mediated GDP release requires a conformational change in the α5 helix of the Gα subunit and is associated with structural changes at the Gβ binding site. However, additional studies are required to fully describe the mechanism of receptor-mediated GDP release and the structure of the receptor–G-protein complex.

  • Binding of GTP induces a structural rearrangement of the receptor–G-protein complex that leads to dissociation of some, but not all, complexes. This observation is consistent with the existence of precoupled receptor–G-protein complexes that may not completely disassemble on G protein activation.

  • Fundamentally, the unanswered questions about G protein activation reflect a poor understanding of the structure of the complex. A goal of future studies will be to refine current models of the receptor–G-protein complex in terms of the available structural information until a crystal structure of the complex is solved.

Abstract

Heterotrimeric G proteins have a crucial role as molecular switches in signal transduction pathways mediated by G-protein-coupled receptors. Extracellular stimuli activate these receptors, which then catalyse GTP–GDP exchange on the G protein α-subunit. The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The G protein cycle.
Figure 2: Receptor–G-protein interface.
Figure 3: Secondary structure of Gα.
Figure 4: Potential routes to the nucleotide-binding pocket.
Figure 5: Proposed mechanisms for GDP release.
Figure 6: A role for Gβγ in GDP dissociation?
Figure 7: GTP-mediated changes at the subunit interface.

References

  1. 1

    Oldham, W. M. & Hamm, H. E. Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys. 39, 117–166 (2006). Comprehensive review of the structure and function of heterotrimeric G proteins throughout the G-protein cycle.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Sprang, S. R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Bjarnadottir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Kristiansen, K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther. 103, 21–80 (2004). Comprehensive review of G-protein-coupled receptor structure and function.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Ballesteros, J. A., Shi, L. & Javitch, J. A. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors. Mol. Pharmacol. 60, 1–19 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000). First crystal structure of a G-protein-coupled receptor.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K. & Stenkamp, R. E. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40, 7761–7772 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Okada, T. et al. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl Acad. Sci. USA 99, 5982–5987 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 16123–16128 (2006). Recently described structure of a photostable rhodopsin intermediate.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Qanbar, R. & Bouvier, M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther. 97, 1–33 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Stacey, M., Lin, H. H., Gordon, S. & McKnight, A. J. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem. Sci. 25, 284–289 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Dann, C. E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Downes, G. B. & Gautam, N. The G protein subunit gene families. Genomics 62, 544–552 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994). First description of nucleotide-dependent conformational changes in G α.

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Mixon, M. B. et al. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270, 954–960 (1995).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366, 654–663 (1993). First description of the three-dimensional structure of a G-protein α -subunit.

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Smotrys, J. E. & Linder, M. E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Chen, C. A. & Manning, D. R. Regulation of G proteins by covalent modification. Oncogene 20, 1643–1652 (2001).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Wall, M. A. et al. The structure of the G protein heterotrimer Giα1β1γ2 . Cell 83, 1047–1058 (1995). First structure of a G-protein heterotrimer, which provided the structural basis for G α –G β interactions.

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E. & Sigler, P. B. Crystal structure of a G-protein βγ dimer at 2.1 Å resolution. Nature 379, 369–374 (1996).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Schmidt, C. J., Thomas, T. C., Levine, M. A. & Neer, E. J. Specificity of G protein β and γ subunit interactions. J. Biol. Chem. 267, 13807–13810 (1992).

    CAS  PubMed  Google Scholar 

  30. 30

    Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Graf, R. et al. Studies on the interaction of α subunits of GTP-binding proteins with βγ dimers. Eur. J. Biochem. 210, 609–619 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Lambright, D. G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Seitz, H. R. et al. Molecular determinants of the reversible membrane anchorage of the G-protein transducin. Biochemistry 38, 7950–7960 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Iiri, T., Backlund, P. S. Jr, Jones, T. L., Wedegaertner, P. B. & Bourne, H. R. Reciprocal regulation of Gsα by palmitate and the βγ subunit. Proc. Natl Acad. Sci. USA 93, 14592–14597 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Iniguez-Lluhi, J. A., Simon, M. I., Robishaw, J. D. & Gilman, A. G. G protein βγ subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of γ. J. Biol. Chem. 267, 23409–23417 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996). SDSL study of the structural changes in rhodopsin on photoactivation.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P. & Bourne, H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Jensen, A. D. et al. Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the β2 adrenergic receptor mapped by site-selective fluorescent labeling. J. Biol. Chem. 276, 9279–9290 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Huang, W., Osman, R. & Gershengorn, M. C. Agonist-induced conformational changes in thyrotropin-releasing hormone receptor type I: disulfide cross-linking and molecular modeling approaches. Biochemistry 44, 2419–2431 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Ward, S. D. et al. Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M3 muscarinic acetylcholine receptor. Biochemistry 45, 676–685 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Palczewski, K. G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 743–767 (2006). This study, together with reference 66, describes the use of chemical cross-linking reagents to define point-to-point interactions between rhodopsin and transducin.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Vilardaga, J. P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M. J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nature Biotechnol. 21, 807–812 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Gether, U., Asmar, F., Meinild, A. K. & Rasmussen, S. G. Structural basis for activation of G-protein-coupled receptors. Pharmacol. Toxicol. 91, 304–312 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Tolkovsky, A. M. & Levitzki, A. Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17, 3795 (1978).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Gales, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nature Struct. Mol. Biol. 13, 778–786 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Hein, P., Frank, M., Hoffmann, C., Lohse, M. J. & Bunemann, M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 24, 4106–4114 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Alves, I. D. et al. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Biophys. J. 88, 198–210 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Alves, I. D. et al. Direct observation of G-protein binding to the human δ-opioid receptor using plasmon-waveguide resonance spectroscopy. J. Biol. Chem. 278, 48890–48897 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Liebman, P. A. & Sitaramayya, A. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17, 215–225 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Hamm, H. E., Deretic, D., Hofmann, K. P., Schleicher, A. & Kohl, B. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin. J. Biol. Chem. 262, 10831–10838 (1987).

    CAS  PubMed  Google Scholar 

  51. 51

    Janz, J. M. & Farrens, D. L. Rhodopsin activation exposes a key hydrophobic binding site for the transducin α-subunit C terminus. J. Biol. Chem. 279, 29767–29773 (2004). Uses fluorescence spectroscopy to identify the putative binding site for the G α C-terminal peptide as the inner face of transmembrane helix 6.

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Dratz, E. A. et al. NMR structure of a receptor-bound G-protein peptide. Nature 363, 276–281 (1993).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Kisselev, O. G. et al. Light-activated rhodopsin induces structural binding motif in G protein α subunit. Proc. Natl Acad. Sci. USA 95, 4270–4275 (1998).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Koenig, B. W. et al. Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings. J. Mol. Biol. 322, 441–461 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Hamm, H. E. et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241, 832–835 (1988). First evidence that a peptide corresponding to the C terminus of G α can bind a receptor, competing with the heterotrimeric G protein for binding.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Aris, L. et al. Structural requirements for the stabilization of metarhodopsin II by the C terminus of the α subunit of transducin. J. Biol. Chem. 276, 2333–2339 (2001).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Martin, E. L., Rens-Domiano, S., Schatz, P. J. & Hamm, H. E. Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J. Biol. Chem. 271, 361–366 (1996).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Sullivan, K. A. et al. Identification of receptor contact site involved in receptor-G protein coupling. Nature 330, 758–760 (1987).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Schwindinger, W. F., Miric, A., Zimmerman, D. & Levine, M. A. A Novel Gsα mutant in a patient with Albright hereditary osteodystrophy uncouples cell surface receptors from adenylyl cyclase. J. Biol. Chem. 269, 25387–25391 (1994).

    CAS  PubMed  Google Scholar 

  60. 60

    Osawa, S. & Weiss, E. R. The effect of carboxyl-terminal mutagenesis of Gtα on rhodopsin and guanine nucleotide binding. J. Biol. Chem. 270, 31052–31058 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    West, R. E. Jr, Moss, J., Vaughan, M., Liu, T. & Liu, T. Y. Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J. Biol. Chem. 260, 14428–14430 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Onrust, R. et al. Receptor and βγ binding sites in the α subunit of the retinal G protein transducin. Science 275, 381–384 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Bae, H. et al. Molecular determinants of selectivity in 5-hydroxytryptamine1B receptor-G protein interactions. J. Biol. Chem. 272, 32071–32077 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Bae, H., Cabrera-Vera, T. M., Depree, K. M., Graber, S. G. & Hamm, H. E. Two amino acids within the α4 helix of Gαi1 mediate coupling with 5-hydroxytryptamine1B receptors. J. Biol. Chem. 274, 14963–14971 (1999).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Lichtarge, O., Bourne, H. R. & Cohen, F. E. Evolutionarily conserved Gαβγ binding surfaces support a model of the G protein-receptor complex. Proc. Natl Acad. Sci. USA 93, 7507–7511 (1996).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Cai, K., Itoh, Y. & Khorana, H. G. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc. Natl Acad. Sci. USA 98, 4877–4882 (2001). This study, together with reference 41, describes the use of chemical cross-linking reagents to define point-to-point interactions between rhodopsin and transducin.

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Mazzoni, M. R. & Hamm, H. E. Interaction of transducin with light-activated rhodopsin protects it from proteolytic digestion by trypsin. J. Biol. Chem. 271, 30034–30040 (1996).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Grishina, G. & Berlot, C. H. A surface-exposed region of Gsα in which substitutions decrease receptor-mediated activation and increase receptor affinity. Mol. Pharmacol. 57, 1081–1092 (2000).

    CAS  PubMed  Google Scholar 

  69. 69

    Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., Remmers, A. E. & Neubig, R. R. Binding of an α2 adrenergic receptor third intracellular loop peptide to Gβ and the amino terminus of Gα. J. Biol. Chem. 269, 27618–27624 (1994).

    CAS  PubMed  Google Scholar 

  70. 70

    Itoh, Y., Cai, K. & Khorana, H. G. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc. Natl Acad. Sci. USA 98, 4883–4887 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Ho, M. K. & Wong, Y. H. The amino terminus of Gαz is required for receptor recognition, whereas its α4/β6 loop is essential for inhibition of adenylyl cyclase. Mol. Pharmacol. 58, 993–1000 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., VanDort, M. & Neubig, R. R. Receptor and membrane interaction sites on Gβ. A receptor-derived peptide binds to the carboxyl terminus. J. Biol. Chem. 271, 3336–3339 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Ford, C. E. et al. Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Kisselev, O., Pronin, A., Ermolaeva, M. & Gautam, N. Receptor–G protein coupling is established by a potential conformational switch in the βγ complex. Proc. Natl Acad. Sci. USA 92, 9102–9106 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Kisselev, O. G. & Downs, M. A. Rhodopsin controls a conformational switch on the transducin γ subunit. Structure 11, 367–373 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Azpiazu, I. et al. A G protein γ subunit-specific peptide inhibits muscarinic receptor signaling. J. Biol. Chem. 274, 35305–35308 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Javitch, J. A. The ants go marching two by two: oligomeric structure of G-protein-coupled receptors. Mol. Pharmacol. 66, 1077–1082 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Milligan, G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 66, 1–7 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Baneres, J. L. & Parello, J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J. Mol. Biol. 329, 815–829 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Fotiadis, D. et al. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Pin, J. P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354 (2003).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    George, S. R., O'Dowd, B. F. & Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nature Rev. Drug Discov. 1, 808–820 (2002).

    CAS  Article  Google Scholar 

  83. 83

    Goudet, C. et al. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J. Biol. Chem. 280, 24380–24385 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Hlavackova, V. et al. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J. 24, 499–509 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    White, J. F. et al. Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc. Natl Acad. Sci. USA 104, 12199–12204 (2007).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA 104, 7682–7687 (2007).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Herrmann, R. et al. Sequence of interactions in receptor-G protein coupling. J. Biol. Chem. 279, 24283–24290 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Herrmann, R., Heck, M., Henklein, P., Hofmann, K. P. & Ernst, O. P. Signal transfer from GPCRs to G proteins: role of the Gα N-terminal region in rhodopsin-transducin coupling. J. Biol. Chem. 281, 30234–30241 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363, 274–276 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Blahos, J. et al. Extreme C terminus of G protein α-subunits contains a site that discriminates between Gi-coupled metabotropic glutamate receptors. J. Biol. Chem. 273, 25765–25769 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Kostenis, E., Gomeza, J., Lerche, C. & Wess, J. Genetic analysis of receptor-Gαq coupling selectivity. J. Biol. Chem. 272, 23675–23681 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Conklin, B. R. et al. Carboxyl-terminal mutations of Gqα and Gsα that alter the fidelity of receptor activation. Mol. Pharmacol. 50, 885–890 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Natochin, M., Muradov, K. G., McEntaffer, R. L. & Artemyev, N. O. Rhodopsin recognition by mutant Gsα containing C-terminal residues of transducin. J. Biol. Chem. 275, 2669–2675 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Kostenis, E., Conklin, B. R. & Wess, J. Molecular basis of receptor/G protein coupling selectivity studied by coexpression of wild type and mutant m2 muscarinic receptors with mutant Gαq subunits. Biochemistry 36, 1487–1495 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Kostenis, E., Degtyarev, M. Y., Conklin, B. R. & Wess, J. The N-terminal extension of Gαq is critical for constraining the selectivity of receptor coupling. J. Biol. Chem. 272, 19107–19110 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Kostenis, E., Zeng, F. Y. & Wess, J. Functional characterization of a series of mutant G protein αq subunits displaying promiscuous receptor coupling properties. J. Biol. Chem. 273, 17886–17892 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Blahos, J. et al. A novel site on the Gα-protein that recognizes heptahelical receptors. J. Biol. Chem. 276, 3262–3269 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Lee, C. H., Katz, A. & Simon, M. I. Multiple regions of Gα16 contribute to the specificity of activation by the C5a receptor. Mol. Pharmacol. 47, 218–223 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Slessareva, J. E. et al. Closely related G-protein-coupled receptors use multiple and distinct domains on G-protein α-subunits for selective coupling. J. Biol. Chem. 278, 50530–50536 (2003).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Heydorn, A. et al. Identification of a novel site within G protein α subunits important for specificity of receptor–G protein interaction. Mol. Pharmacol. 66, 250–259 (2004).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Kostenis, E. et al. A highly conserved glycine within linker I and the extreme C terminus of G protein α subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity. J. Pharmacol. Exp. Ther. 313, 78–87 (2005).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    McIntire, W. E., MacCleery, G. & Garrison, J. C. The G protein β subunit is a determinant in the coupling of Gs to the β1-adrenergic and A2a adenosine receptors. J. Biol. Chem. 276, 15801–15809 (2001).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Hou, Y., Azpiazu, I., Smrcka, A. & Gautam, N. Selective role of G protein γ subunits in receptor interaction. J. Biol. Chem. 275, 38961–38964 (2000).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Jian, X. et al. Gβγ affinity for bovine rhodopsin is determined by the carboxyl-terminal sequences of the γ subunit. J. Biol. Chem. 276, 48518–48525 (2001).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Myung, C. S. et al. Regions in the G protein γ subunit important for interaction with receptors and effectors. Mol. Pharmacol. 69, 877–887 (2005).

    PubMed  Google Scholar 

  106. 106

    Yasuda, H., Lindorfer, M. A., Woodfork, K. A., Fletcher, J. E. & Garrison, J. C. Role of the prenyl group on the G protein γ subunit in coupling trimeric G proteins to A1 adenosine receptors. J. Biol. Chem. 271, 18588–18595 (1996).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Wess, J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther. 80, 231–264 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Hedin, K. E., Duerson, K. & Clapham, D. E. Specificity of receptor-G protein interactions: searching for the structure behind the signal. Cell. Signal. 5, 505–518 (1993).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Wess, J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 11, 346–354 (1997).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Gilchrist, R. L., Ryu, K. S., Ji, I. & Ji, T. H. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J. Biol. Chem. 271, 19283–19287 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Perez, D. M. et al. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol. Pharmacol. 49, 112–122 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Kenakin, T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci. 24, 346–354 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113

    Perez, D. M. & Karnik, S. S. Multiple signaling states of G-protein-coupled receptors. Pharmacol. Rev. 57, 147–161 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114

    Mukhopadhyay, S. & Howlett, A. C. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol. Pharmacol. 67, 2016–2024 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115

    McLaughlin, J. N. et al. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J. Biol. Chem. 280, 25048–25059 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Rodbell, M., Krans, H. M., Pohl, S. L. & Birnbaumer, L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem. 246, 1872–1876 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Emeis, D., Kuhn, H., Reichert, J. & Hofmann, K. P. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 143, 29–34 (1982).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118

    Bornancin, F., Pfister, C. & Chabre, M. The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin. Eur. J. Biochem. 184, 687–698 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119

    Bourne, H. R. How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol. 9, 134–142 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    Hamm, H. E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Slusarz, R. & Ciarkowski, J. Interaction of class A G protein-coupled receptors with G proteins. Acta Biochim. Pol. 51, 129–136 (2004).

    CAS  PubMed  Google Scholar 

  122. 122

    Fotiadis, D. et al. The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 564, 281–288 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Ciarkowski, J., Witt, M. & Slusarz, R. A hypothesis for GPCR activation. J. Mol. Model. 11, 407–415 (2005).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Iiri, T., Herzmark, P., Nakamoto, J. M., van Dop, C. & Bourne, H. R. Rapid GDP release from Gsa in patients with gain and loss of endocrine function. Nature 371, 164–168 (1994).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Posner, B. A., Mixon, M. B., Wall, M. A., Sprang, S. R. & Gilman, A. G. The A326S mutant of Giα1 as an approximation of the receptor-bound state. J. Biol. Chem. 273, 21752–21758 (1998).

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Thomas, T. C., Schmidt, C. J. & Neer, E. J. G-protein αo subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc. Natl Acad. Sci. USA 90, 10295–10298 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Marin, E. P., Krishna, A. G. & Sakmar, T. P. Rapid activation of transducin by mutations distant from the nucleotide-binding site. Evidence for a mechanistic model of receptor-catalyzed nucleotide exchange by G proteins. J. Biol. Chem. 276, 27400–27405 (2001).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Marin, E. P., Krishna, A. G. & Sakmar, T. P. Disruption of the α5 helix of transducin impairs rhodopsin-catalyzed nucleotide exchange. Biochemistry 41, 6988–6994 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    Natochin, M., Moussaif, M. & Artemyev, N. O. Probing the mechanism of rhodopsin-catalyzed transducin activation. J. Neurochem. 77, 202–210 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Struct. Mol. Biol. 13, 772–777 (2006). SDSL study of Gα demonstrating that a rotation-translation of the α5 helix couples receptor binding to GDP release.

    CAS  Article  Google Scholar 

  131. 131

    Ceruso, M. A., Periole, X. & Weinstein, H. Molecular dynamics simulations of transducin: interdomain and front to back communication in activation and nucleotide exchange. J. Mol. Biol. 338, 469–481 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132

    Johnston, C. A. & Siderovski, D. P. Structural basis for nucleotide exchange on Gai subunits and receptor coupling specificity. Proc. Natl Acad. Sci. USA 104, 2001–2006 (2007). Structure of Ga i1 bound to peptides that accelerate nucleotide exchange as a possible mimic of the receptor-bound conformation.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133

    Nanoff, C. et al. The carboxyl terminus of the Gα-subunit is the latch for triggered activation of heterotrimeric G proteins. Mol. Pharmacol. 69, 397–405 (2006).

    CAS  PubMed  Google Scholar 

  134. 134

    Grishina, G. & Berlot, C. H. Mutations at the domain interface of Gsa impair receptor-mediated activation by altering receptor and guanine nucleotide binding. J. Biol. Chem. 273, 15053–15060 (1998).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Pereira, R. & Cerione, R. A. A switch 3 point mutation in the α subunit of transducin yields a unique dominant-negative inhibitor. J. Biol. Chem. 280, 35696–35703 (2005).

    CAS  PubMed  Article  Google Scholar 

  136. 136

    Barren, B., Natochin, M. & Artemyev, N. O. Mutation R238E in transducin-α yields a GTPase and effector-deficient, but not dominant-negative, G-protein α-subunit. Mol. Vis. 12, 492–498 (2006).

    CAS  PubMed  Google Scholar 

  137. 137

    Denker, B. M., Boutin, P. M. & Neer, E. J. Interactions between the amino- and carboxyl-terminal regions of Gα subunits: analysis of mutated Gαo/Gαi2 chimeras. Biochemistry 34, 5544–5553 (1995).

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Denker, B. M., Schmidt, C. J. & Neer, E. J. Promotion of the GTP-liganded state of the Goα protein by deletion of the C terminus. J. Biol. Chem. 267, 9998–10002 (1992).

    CAS  PubMed  Google Scholar 

  139. 139

    Iiri, T., Farfel, Z. & Bourne, H. R. G-protein diseases furnish a model for the turn-on switch. Nature 394, 35–38 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140

    Rondard, P. et al. Mutant G protein α subunit activated by Gβγ: a model for receptor activation? Proc. Natl Acad. Sci. USA 98, 6150–6155 (2001). Description and scientific support of the lever-arm hypothesis of Gβγ-mediated GDP release.

    CAS  PubMed  Article  Google Scholar 

  141. 141

    Cherfils, J. & Chabre, M. Activation of G-protein Gα subunits by receptors through Gα–Gβ and Gα–Gγ interactions. Trends Biochem. Sci. 28, 13–17 (2003). Description of the gear-shift model for Gβγ-mediated GDP release.

    CAS  PubMed  Article  Google Scholar 

  142. 142

    Azpiazu, I. & Gautam, N. G protein γ subunit interaction with a receptor regulates receptor-stimulated nucleotide exchange. J. Biol. Chem. 276, 41742–41747 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143

    Johnston, C. A. et al. Structure of Gαi1 bound to a GDP-selective peptide provides insight into guanine nucleotide exchange. Structure 13, 1069–1080 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144

    Medkova, M., Preininger, A. M., Yu, N. J., Hubbell, W. L. & Hamm, H. E. Conformational changes in the amino-terminal helix of the G protein αi1 following dissociation from Gβγ subunit and activation. Biochemistry 41, 9962–9972 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145

    Van Eps, N., Oldham, W. M., Hamm, H. E. & Hubbell, W. L. Structural and dynamical changes in an α-subunit of a heterotrimeric G protein along the activation pathway. Proc. Natl Acad. Sci. USA 103, 16194–16199 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146

    Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proc. Natl Acad. Sci. USA 104, 7927–7932 (2007).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Warner, D. R., Weng, G., Yu, S., Matalon, R. & Weinstein, L. S. A novel mutation in the switch 3 region of Gsα in a patient with Albright hereditary osteodystrophy impairs GDP binding and receptor activation. J. Biol. Chem. 273, 23976–23983 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148

    Warner, D. R. & Weinstein, L. S. A mutation in the heterotrimeric stimulatory guanine nucleotide binding protein α-subunit with impaired receptor-mediated activation because of elevated GTPase activity. Proc. Natl Acad. Sci. USA 96, 4268–4272 (1999).

    CAS  PubMed  Article  Google Scholar 

  149. 149

    Remmers, A. E., Engel, C., Liu, M. & Neubig, R. R. Interdomain interactions regulate GDP release from heterotrimeric G proteins. Biochemistry 38, 13795–13800 (1999).

    CAS  PubMed  Article  Google Scholar 

  150. 150

    Marin, E. P. et al. The function of interdomain interactions in controlling nucleotide exchange rates in transducin. J. Biol. Chem. 276, 23873–23880 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151

    Majumdar, S., Ramachandran, S. & Cerione, R. A. Perturbing the linker regions of the α-subunit of transducin: a new class of constitutively active GTP-binding proteins. J. Biol. Chem. 279, 40137–40145 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152

    Birnbaumer, L., Pohl, S. L., Rodbell, M. & Sundby, F. The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: reversibility and dependence on concentration of free hormone. J. Biol. Chem. 247, 2038–2043 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Heck, M. & Hofmann, K. P. Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation. Initial rate analysis based on a double displacement mechanism. J. Biol. Chem. 276, 10000–10009 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154

    Bunemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA 100, 16077–16082 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  155. 155

    Gales, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nature Methods 2, 177–184 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156

    Digby, G. J., Lober, R. M., Sethi, P. R. & Lambert, N. A. Some G protein heterotrimers physically dissociate in living cells. Proc. Natl Acad. Sci. USA 103, 17789–17794 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157

    Hein, P. et al. GS activation is time-limiting in initiating receptor-mediated signaling. J. Biol. Chem. 281, 33345–33351 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158

    Mukhopadhyay, S. & Ross, E. M. Rapid GTP binding and hydrolysis by Gq promoted by receptor and GTPase-activating proteins. Proc. Natl Acad. Sci. USA 96, 9539–9544 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159

    Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J. J. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex. Science 310, 1686–1690 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160

    Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heidi E. Hamm.

Related links

Related links

DATABASES

OMIM

Albright's hereditary osteodystrophy

Protein Data Bank

1F88

1FQK

1GOT

1GZM

1TND

2BCJ

2HLB

FURTHER INFORMATION

Heidi E. Hamm's homepage

GPCR database

G protein database

Glossary

G-protein-coupled receptor

(GPCR). A member of the most diverse class of cell-surface receptors that mediate the actions of various hormones, neurotransmitters and sensory stimuli by activating heterotrimeric G proteins.

A guanine-nucleotide-binding protein and GTP hydrolase, the structural conformations and molecular interactions of which are governed by the identity of the bound nucleotide.

Rhodopsin

A GPCR that is activated by the photoisomerization of covalently bound 11-cis-retinal to all-trans-retinal.

DRY motif

A highly conserved Asp-Arg-Tyr motif near the cytoplasmic face of GPCRs that has a crucial role in both the mechanisms of receptor and G protein activation.

Palmitoylation site

A Cys residue to which palmitic acid is covalently attached, which anchors helix VIII to the membrane in GPCRs and creates a fourth intracellular loop.

Inverse agonist

A ligand that decreases the intrinsic activity of a receptor (that is, has the opposite effect of an agonist).

RGS protein

The regulator of G protein signalling (RGS) proteins bind Gα and accelerate GTP hydrolysis by stabilizing the transition-state conformation.

GTPγS

A non-hydrolysable analogue of GTP that is used to study the conformation and molecular interactions of activated Gα.

β-propeller

An all-β-sheet protein fold that is characterized by 4–8 blade-shaped β-sheets arranged toroidally around a central axis.

WD40

A motif of 40 amino acids ending in Trp-Asp, which is found in proteins as several repeated units that fold into a β-propeller and mediate protein–protein interactions.

Coiled-coil

A structural motif in proteins where two or more α-helices wrap around each other like the strands of a rope.

Isoprenylation

The transfer of either a farnesyl or a geranylgeranyl lipid moiety to the C-terminal Cys of a target protein.

Site-directed spin labelling

A technique using site-directed Cys mutagenesis to provide a reactive thiol for the covalent attachment of a paramagnetic probe.

Transducin

A heterotrimeric G protein of the visual transduction system that is composed of Gαtβ1γ1 and activates cGMP phosphodiesterase by binding its inhibitory subunit.

Metarhodopsin II

(MII). An active signalling conformation of rhodopsin (formed after photo-isomerization of retinal) that catalyses nucleotide exchange on transducin.

Pertussis toxin

The exotoxin produced by the bacterium Bordetella pertussis that catalyses ADP ribosylation of the C-terminal Cys of Gαi/o/t, preventing interaction with GPCRs.

ADP ribosylation

An enzymatic covalent modification of a protein. ADP ribose is transferred from NADH.

Ala-scanning mutagenesis

An experimental approach that uses systematic site-directed Ala mutagenesis in a protein to identify residues that are vital for function.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oldham, W., Hamm, H. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9, 60–71 (2008). https://doi.org/10.1038/nrm2299

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing