Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

OPINION Epidermal homeostasis: do committed progenitors work while stem cells sleep?

Abstract

Tracking the fate of cells in murine epidermis in vivo has revealed that a committed progenitor cell population can maintain normal adult tissue in the long term without support from a long-lived, self-renewing population of stem cells. Here, we argue that these results challenge the dogma that stem-cell proliferation is required for the cellular homeostasis of the epidermis and other adult tissues, with important implications for tissue physiology and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The EPU hypothesis.
Figure 2: Clonal analysis in murine interfollicular epidermis.
Figure 3: The stem–CP model of epidermal homeostasis.

Similar content being viewed by others

References

  1. Lajtha, L. G. Stem cell concepts. Differentiation 14, 23–34 (1979).

    Article  CAS  Google Scholar 

  2. Brash, D. E., Zhang, W., Grossman, D. & Takeuchi, S. Colonization of adjacent stem cell compartments by mutant keratinocytes. Semin. Cancer Biol. 15, 97–102 (2005).

    Article  CAS  Google Scholar 

  3. Fuchs, E. Scratching the surface of skin development. Nature 445, 834–842 (2007).

    Article  CAS  Google Scholar 

  4. Potten, C. S. & Booth, C. Keratinocyte stem cells: a commentary. J. Invest. Dermatol. 119, 888–899 (2002).

    Article  CAS  Google Scholar 

  5. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  Google Scholar 

  6. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    Article  CAS  Google Scholar 

  7. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  Google Scholar 

  8. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol. 22, 411–417 (2004).

    Article  CAS  Google Scholar 

  9. Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20, 1215–1222 (2001).

    Article  CAS  Google Scholar 

  10. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677–14682 (2005).

    Article  CAS  Google Scholar 

  11. Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855–861 (2005).

    Article  CAS  Google Scholar 

  12. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005).

    Article  CAS  Google Scholar 

  13. Potten, C. S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 7, 77–88 (1974).

    CAS  PubMed  Google Scholar 

  14. Potten, C. S. Epidermal cell production rates. J. Invest. Dermatol. 65, 488–500 (1975).

    Article  CAS  Google Scholar 

  15. Kaur, P. Interfollicular epidermal stem cells: identification, challenges, potential. J. Invest. Dermatol. 126, 1450–1458 (2006).

    Article  CAS  Google Scholar 

  16. Mackenzie, I. C. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature 226, 653–655 (1970).

    Article  CAS  Google Scholar 

  17. Morris, R. J., Fischer, S. M. & Slaga, T. J. Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J. Invest. Dermatol. 84, 277–281 (1985).

    Article  CAS  Google Scholar 

  18. Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    Article  CAS  Google Scholar 

  19. Mackenzie, I. C. Labelling of murine epidermal Langerhans cells with H3-thymidine. Am. J. Anat. 144, 127–136 (1975).

    Article  CAS  Google Scholar 

  20. Valladeau, J. & Saeland, S. Cutaneous dendritic cells. Semin. Immunol. 17, 273–283 (2005).

    Article  CAS  Google Scholar 

  21. Ghaznawie, M., Papadimitriou, J. M. & Heenan, P. J. The steady-state turnover of murine epidermal Langerhans cells. Br. J. Dermatol. 141, 57–61 (1999).

    Article  CAS  Google Scholar 

  22. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunol. 3, 1135–1141 (2002).

    Article  CAS  Google Scholar 

  23. Mackenzie, I. C. & Bickenbach, J. R. Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell Tissue Res. 242, 551–556 (1985).

    Article  CAS  Google Scholar 

  24. Schmidt, G. H., Blount, M. A. & Ponder, B. A. Immunochemical demonstration of the clonal organization of chimaeric mouse epidermis. Development 100, 535–541 (1987).

    CAS  PubMed  Google Scholar 

  25. Mackenzie, I. C. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol. 109, 377–383 (1997).

    Article  CAS  Google Scholar 

  26. Kameda, T. et al. Analysis of the cellular heterogeneity in the basal layer of mouse ear epidermis: an approach from partial decomposition in vitro and retroviral cell marking in vivo . Exp. Cell Res. 283, 167–183 (2003).

    Article  CAS  Google Scholar 

  27. Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep. 5, 914–920 (2004).

    Article  CAS  Google Scholar 

  28. Ro, S. & Rannala, B. Evidence from the stop-EGFP mouse supports a niche-sharing model of epidermal proliferative units. Exp. Dermatol. 14, 838–843 (2005).

    Article  Google Scholar 

  29. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    Article  CAS  Google Scholar 

  30. Jones, P. H., Harper, S. & Watt, F. M. Stem cell patterning and fate in human epidermis. Cell 80, 83–93 (1995).

    Article  CAS  Google Scholar 

  31. Li, A., Pouliot, N., Redvers, R. & Kaur, P. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest. 113, 390–400 (2004).

    Article  CAS  Google Scholar 

  32. Wan, H. et al. Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes. J. Cell Sci. 116, 4239–4248 (2003).

    Article  CAS  Google Scholar 

  33. Lowell, S., Jones, P., Le Roux., I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by Delta-Notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    Article  CAS  Google Scholar 

  34. Legg, J., Jensen, U. B., Broad, S., Leigh, I. & Watt, F. M. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 130, 6049–6063 (2003).

    Article  CAS  Google Scholar 

  35. Jensen, K. B. & Watt, F. M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl Acad. Sci. USA 103, 11958–11963 (2006).

    Article  CAS  Google Scholar 

  36. Li, A., Simmons, P. J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA 95, 3902–3907 (1998).

    Article  CAS  Google Scholar 

  37. Jensen, U. B., Lowell, S. & Watt, F. M. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126, 2409–2418 (1999).

    CAS  PubMed  Google Scholar 

  38. Ghazizadeh, S. & Taichman, L. B. Organization of stem cells and their progeny in human epidermis. J. Invest. Dermatol. 124, 367–372 (2005).

    Article  CAS  Google Scholar 

  39. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    Article  CAS  Google Scholar 

  40. Galton, F. & Watson, F. H. On the probability of the extinction of families. J. R. Anthropol. Inst., 138–144 (1874).

  41. Bienaymé, I. J. De la loi de multiplication et de la duree des familles. Soc. Philomath. Paris Extraits Ser. 5, 37–39 (1845).

    Google Scholar 

  42. Bickenbach, J. R. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 60, 1611–1620 (1981).

    Article  Google Scholar 

  43. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  Google Scholar 

  44. Potten, C. S. et al. Proliferation in murine epidermis after minor mechanical stimulation. Part 1. Sustained increase in keratinocyte production and migration. Cell Prolif. 33, 231–246 (2000).

    Article  CAS  Google Scholar 

  45. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  Google Scholar 

  46. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21, 1358–1366 (2007).

    Article  CAS  Google Scholar 

  47. Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nature Rev. Cancer 3, 444–451 (2003).

    Article  CAS  Google Scholar 

  48. Zhang, W., Remenyik, E., Zelterman, D., Brash, D. E. & Wikonkal, N. M. Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc. Natl Acad. Sci. USA 98, 13948–13953 (2001).

    Article  CAS  Google Scholar 

  49. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  Google Scholar 

  50. Bickenbach, J. R. & Chism, E. Selection and extended growth of murine epidermal stem cells in culture. Exp. Cell Res. 244, 184–195 (1998).

    Article  CAS  Google Scholar 

  51. Mackenzie, I. C., Zimmerman, K. & Peterson, L. The pattern of cellular organization of human epidermis. J. Invest. Dermatol. 76, 459–461 (1981).

    Article  CAS  Google Scholar 

  52. Potten, C. S. Psoriasis: Cell Proliferation (eds Wright, N. A. & Camplejohn, R. S.) (Churchill Livingstone, Edinburgh, 1983).

    Google Scholar 

  53. Klein, A. M., Doupe, D. P., Jones, P. H. & Simons, B. D. Kinetics of cell division in epidermal maintenance. Phys. Rev. E 76, 021910 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the important contributions made by E. Clayton, D. Doupé, A. Klein and D. Winton in formulating the new insights reflected in this work, and we are grateful to W. Harris and A. Philpott for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Jones.

Related links

Related links

FURTHER INFORMATION

Philip Jones's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, P., Simons, B. OPINION Epidermal homeostasis: do committed progenitors work while stem cells sleep?. Nat Rev Mol Cell Biol 9, 82–88 (2008). https://doi.org/10.1038/nrm2292x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2292x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing