Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromosomal passengers: conducting cell division

Key Points

  • The chromosomal passenger complex (CPC) is involved in the proper orchestration of both mitosis and meiosis. The CPC comprises Aurora-B protein kinase, the inner centromere protein (INCENP), survivin and borealin (also known as Dasra-B). The non-enzymatic members of the complex control the targeting, enzymatic activity and stability of Aurora-B. A fifth protein, TD-60, while not part of the complex, may also have an important role in regulating Aurora-B activity.

  • In early mitosis, the CPC appears on chromosome arms and subsequently concentrates at centromeres. It promotes the loading of condensin I onto mitotic chromosomes as well as the phosphorylation of histone H3. The CPC is also required for assembly and stability of a bipolar mitotic spindle via the phosphorylation of substrates such as stathmin (also known as oncoprotein-18; OP18) and mitotic centromere-associated kinesin (MCAK), as well as for the correction of kinetochore–microtubule attachment errors via the phosphorylation of substrates such as MCAK and HEC1 (highly expressed in cancer-1; known as Ndc80 in budding yeast).

  • The CPC is required for spindle checkpoint function when tension within the spindle is abnormal. The CPC is thought to be required for the recruitment of the checkpoint protein BUBR1 to the kinetochore and, together with the BUB1 checkpoint kinase, to promote the association of BUBR1 with the anaphase promoting complex/cyclosome.

  • In late mitosis, the CPC transfers from centromeres to the spindle midzone during anaphase to finally concentrate in the midbody during telophase and cytokinesis. CPC activity is essential for cytokinesis. It is thought that phosphorylation of vimentin and Rac GTPase activating protein-1 (MgcRacGAP/CYK-4) by Aurora-B are required for cleavage furrow formation and the completion of cytokinesis, respectively.

  • In both mitosis and meiosis, the CPC is required for the correct centromeric localization of the Shugoshin family of proteins. During meiosis, Shugoshin proteins cooperate with protein phosphatase-2A (PP2A) to promote the maintenance of sister centromere cohesion until the metaphase–anaphase transition of the second meiotic division. They also regulate centromeric cohesion in mitotic cells.

Abstract

Mitosis and meiosis are remarkable processes during which cells undergo profound changes in their structure and physiology. These events are orchestrated with a precision that is worthy of a classical symphony, with different activities being switched on and off at precise times and locations throughout the cell. One essential 'conductor' of this symphony is the chromosomal passenger complex (CPC), which comprises Aurora-B protein kinase, the inner centromere protein INCENP, survivin and borealin (also known as Dasra-B). Studies of the CPC are providing insights into its functions, which range from chromosome–microtubule interactions to sister chromatid cohesion to cytokinesis, and constitute one of the most dynamic areas of ongoing mitosis and meiosis research.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Chromosomal passenger complex localization during mitosis.
Figure 2: Interactions within the chromosomal passenger complex and Aurora-B activation.
Figure 3: Chromosomal passenger complex localization and function during mitosis.
Figure 4: Regulation of kinetochore binding to microtubules by the chromosomal passenger complex (CPC).
Figure 5: Chromosomal passenger complex localization during meiosis.
Figure 6: Localization and function of the chromosomal passenger complex during meiosis I.

References

  1. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  Google Scholar 

  2. Cooke, C. A., Heck, M. M. & Earnshaw, W. C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol. 105, 2053–2067 (1987).

    CAS  PubMed  Google Scholar 

  3. Earnshaw, W. C. & Bernat, R. L. Chromosomal passengers: toward an integrated view of mitosis. Chromosoma 100, 139–146 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Carmena, M. & Earnshaw, W. C. The cellular geography of aurora kinases. Nature Rev. Mol. Cell Biol. 4, 842–854 (2003).

    Article  CAS  Google Scholar 

  5. Vagnarelli, P. & Earnshaw, W. C. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 113, 211–222 (2004).

    Article  PubMed  Google Scholar 

  6. Vader, G., Medema, R. H. & Lens, S. M. The chromosomal passenger complex: guiding Aurora-B through mitosis. J. Cell Biol. 173, 833–837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Terada, Y. et al. AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J. 17, 667–676 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams, R. R. et al. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol. 10, 1075–1078 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Honda, R., Korner, R. & Nigg, E. A. Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol. Biol. Cell 14, 3325–3341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sampath, S. C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118, 187–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Gassmann, R. et al. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 166, 179–191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein, U. R., Nigg, E. A. & Gruneberg, U. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of borealin, survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell 17, 2547–2558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lens, S. M. et al. Uncoupling the central spindle-associated function of the chromosomal passenger complex from its role at centromeres. Mol. Biol. Cell 17, 1897–1909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and Aurora-B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol. 153, 865–880 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvalho, A. et al. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J. Cell Sci. 116, 2987–2998 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Lens, S. M. A. et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J. 22, 2934–2947 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vader, G., Kauw, J. J., Medema, R. H. & Lens, S. M. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 7, 85–92 (2006). This study provides important insights into the role of survivin in targeting the CPC to the centromere and the midbody.

    Article  CAS  PubMed  Google Scholar 

  18. Romano, A. et al. CSC-1: a subunit of the aurora b kinase complex that binds to the survivin-like protein BIR-1 and the INCENP-like protein ICP-1. J. Cell Biol. 161, 229–236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, J. H., Kang, J. S. & Chan, C. S. Sli15 associates with the Ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 145, 1381–1394 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wheatley, S. P., Carvalho, A., Vagnarelli, P. & Earnshaw, W. C. INCENP is required for proper targeting of survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol. 11, 886–890 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bolton, M. A. et al. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol. Biol. Cell 13, 3064–3077 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, J. et al. Survivin enhances Aurora-B kinase activity and localizes Aurora-B in human cells. J. Biol. Chem. 278, 486–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Chan, C. S. & Botstein, D. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135, 677–691 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glover, D. M., Leibowitz, M. H., McLean, D. A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, X. et al. Aurora C is directly associated with survivin and required for cytokinesis. Genes Cells 10, 617–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sasai, K. et al. Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil. Cytoskeleton 59, 249–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kimura, M., Matsuda, Y., Yoshioka, T. & Okano, Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J. Biol. Chem. 274, 7334–7340 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kimmins, S. et al. Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol. Endocrinol. 27 Dec 2006 (doi: 10.1210/me.2006-0332).

    Article  CAS  PubMed  Google Scholar 

  29. Dieterich, K. et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nature Genet. 39, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. INCENP and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol. 10, 1172–1181 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kang, J. et al. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J. Cell Biol. 155, 763–774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bishop, J. D. & Schumacher, J. M. Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B kinase stimulates Aurora B kinase activity. J. Biol. Chem. 277, 27577–27580 (2002). Shows that INCENP phosphorylation by Aurora-B kinase is the first part of a feedback loop that activates the kinase.

    Article  CAS  PubMed  Google Scholar 

  33. Sessa, F. et al. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell 18, 379–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Kelly, A. E. et al. Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev. Cell 12, 31–43 (2007). Demonstrates that clustering of the CPC results in kinase autoactivation, which in turn contributes to the spatial regulation of spindle assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han, Z. et al. The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase. Curr. Biol. 15, 894–904 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chantalat, L. et al. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual α-helical extensions. Mol. Cell 6, 183–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Muchmore, S. W. et al. Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol. Cell 6, 173–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Verdecia, M. A. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Struct. Biol. 7, 602–608 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Wheatley, S. P. et al. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J. Biol. Chem. 279, 5655–5660 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Lens, S. M., Vader, G. & Medema, R. H. The case for survivin as mitotic regulator. Curr. Opin. Cell Biol. 18, 616–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Altieri, D. C. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol. 18, 609–615 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Andreassen, P. R., Palmer, D. K., Wener, M. H. & Margolis, R. L. Telophase disk: a new mammalian mitotic organelle that bisects telophase cells with a possible function in cytokinesis. J. Cell Sci. 99, 523–534 (1991).

    Article  PubMed  Google Scholar 

  43. Mollinari, C. et al. The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev. Cell 5, 295–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Dai, J., Sultan, S., Taylor, S. S. & Higgins, J. M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19, 472–488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Earnshaw, W. C. & Cooke, C. A. Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of three distinct substages of metaphase and early events in cleavage furrow formation. J. Cell Sci. 98, 443–461 (1991).

    Article  PubMed  Google Scholar 

  46. Adams, R. R. et al. Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma 110, 65–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Zeitlin, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol. 155, 1147–1157 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Crosio, C. et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol. 22, 874–885 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Monier, K., Mouradian, S. & Sullivan, K. F. DNA methylation promotes Aurora-B-driven phosphorylation of histone H3 in chromosomal subdomains. J. Cell Sci. 120, 101–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143, 1763–1774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mackay, A. M., Ainsztein, A. M., Eckley, D. M. & Earnshaw, W. C. A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J. Cell Biol. 140, 991–1002 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gillis, A. N., Thomas, S., Hansen, S. D. & Kaplan, K. B. A novel role for the CBF3– kinetochore-scaffold complex in regulating septin dynamics and cytokinesis. J. Cell Biol. 171, 773–784 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell 13, 1099–1108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beardmore, V. A., Ahonen, L. J., Gorbsky, G. J. & Kallio, M. J. Survivin dynamics increases at centromeres during G2/M phase transition and is regulated by microtubule-attachment and Aurora B kinase activity. J. Cell Sci. 117, 4033–4042 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Vong, Q. P. et al. Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310, 1499–1504 (2005). An elegant study which demonstrates that ubiquitylation of survivin regulates CPC dynamics at centromeres.

    Article  CAS  PubMed  Google Scholar 

  56. Kunitoku, N. et al. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell 5, 853–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D. J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J. 22, 1599–1607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104, 525–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Rangasamy, D., Greaves, I. & Tremethick, D. J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nature Struct. Mol. Biol. 11, 650–655 (2004).

    Article  CAS  Google Scholar 

  60. Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Murnion, M. E. et al. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J. Biol. Chem. 276, 26656–26665 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goto, H., Yasui, Y., Nigg, E. A. & Inagaki, M. Aurora-B phosphorylates histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7, 11–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Mateescu, B. et al. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 5, 490–496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Terada, Y. Aurora-B/AIM-1 regulates the dynamic behavior of HP1α at the G2–M transition. Mol. Biol. Cell 17, 3232–3241 (2006). References 64–67 show that Aurora-B negatively regulates the binding of HP1 proteins on heterochromatin as cells enter mitosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Minc, E. et al. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108, 220–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Gassmann, R., Vagnarelli, P., Hudson, D. & Earnshaw, W. C. Mitotic chromosome formation and the condensin paradox. Exp. Cell Res. 296, 35–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takemoto, A. et al. Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res. 35, 2403–2412 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lipp, J. J., Hirota, T., Poser, I. & Peters, J. M. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J. Cell Sci. 120, 1245–1255 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. MacCallum, D. E., Losada, A., Kobayashi, R. & Hirano, T. ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP–aurora B. Mol. Biol. Cell 13, 25–39 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wadsworth, P. & Khodjakov, A. E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol. 14, 413–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Gadea, B. B. & Ruderman, J. V. Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol. Biol. Cell 16, 1305–1318 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Andersen, S. S. et al. Mitotic chromatin regulates phosphorylation of stathmin/Op18. Nature 389, 640–643 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Gadea, B. B. & Ruderman, J. V. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/stathmin. Proc. Natl Acad. Sci. USA 103, 4493–4498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 2, 2 Apr 2004 (doi: 10.1091/mbc.E04-02-0082).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16, 536–541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Buvelot, S., Tatsutani, S. Y., Vermaak, D. & Biggins, S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J. Cell Biol. 160, 329–339 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore–microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting bubR1, Mad2 and CENP-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Murata-Hori, M. & Wang, Y. L. The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr. Biol. 12, 894–899 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, S. T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175, 41–53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999). The first report to show a requirement for Aurora-B in the regulation of microtubule–kinetochore binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kotwaliwale, C. & Biggins, S. Microtubule capture: a concerted effort. Cell 127, 1105–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Cheeseman, I. M. et al. Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. DeLuca, J. G. et al. Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol. 13, 2103–2109 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Deluca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by HEC1. Cell 127, 969–982 (2006). References 92 and 93 are two thorough studies which show that HEC1/Ndc80 phosphorylation by Aurora-B negatively regulates kinetochore–microtubule attachment.

    Article  CAS  PubMed  Google Scholar 

  94. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Knowlton, A. L., Lan, W. & Stukenberg, P. T. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr. Biol. 16, 1705–1710 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Sugiyama, K. et al. Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene 21, 3103–3111 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Ohi, R., Coughlin, M. L., Lane, W. S. & Mitchison, T. J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell 5, 309–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Sandall, S. et al. A Bir1–Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127, 1179–1191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wheatley, S. P. et al. INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp. Cell Res. 262, 122–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Musacchio, A. & Hardwick, K. G. The spindle checkpoint: structural insights into dynamic signalling. Nature Rev. Mol. Cell Biol. 3, 731–741 (2002).

    Article  CAS  Google Scholar 

  103. Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol. 15, 486–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Kallio, M. J., McCleland, M. L., Stukenberg, P. T. & Gorbsky, G. J. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol. 12, 900–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Morrow, C. J. et al. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J. Cell Sci. 118, 3639–3652 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297, 2267–2270 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. McCleland, M. L. et al. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev. 17, 101–114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nature Cell Biol. 8, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell 9, 515–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Watanabe, Y. Shugoshin: guardian spirit at the centromere. Curr. Opin. Cell Biol. 17, 590–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Resnick, T. D. et al. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev. Cell 11, 57–68 (2006). This study was the first to show that the CPC contributes to the maintenance of meiotic centromere cohesion through MEI-S332/Shugoshin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dai, J., Sullivan, B. A. & Higgins, J. M. Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev. Cell 11, 741–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Kitajima, T. S. et al. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr. Biol. 15, 353–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Vanoosthuyse, V., Prykhozhij, S. & Hardwick, K. G. Shugoshin2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol. Biol. Cell 18, 1657–1669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kawashima, S. A. et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21, 420–435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pereira, G. & Schiebel, E. Separase regulates INCENP–Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Gruneberg, U. et al. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J. Cell Biol. 166, 167–172 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863–875 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cesario, J. M. et al. Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators. J. Cell Sci. 119, 4770–4780 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Eckley, D. M. et al. Chromosomal proteins and cytokinesis: patterns of cleavage furrow formation and inner centromere protein positioning in mitotic heterokaryons and mid-anaphase cells. J. Cell Biol. 136, 1169–1183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schumacher, J. M., Golden, A. & Donovan, P. J. AIR-2: an Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J. Cell Biol. 143, 1635–1646 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tatsuka, M. et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res. 58, 4811–4816 (1998).

    CAS  PubMed  Google Scholar 

  128. Severson, A. F. et al. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr. Biol. 10, 1162–1171 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Guse, A., Mishima, M. & Glotzer, M. Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr. Biol. 15, 778–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Mishima, M., Kaitna, S. & Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev. Cell 2, 41–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Jantsch-Plunger, V. et al. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Minoshima, Y. et al. Phosphorylation by Aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell 4, 549–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Goto, H. et al. Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J. Biol. Chem. 278, 8526–8530 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Yasui, Y. et al. Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis. J. Biol. Chem. 279, 12997–13003 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Faitar, S. L., Sossey-Alaoui, K., Ranalli, T. A. & Cowell, J. K. EVI5 protein associates with the INCENP–Aurora B kinase–survivin chromosomal passenger complex and is involved in the completion of cytokinesis. Exp. Cell Res. 312, 2325–2335 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Cutts, S. M. et al. Defective chromosome segregation, microtubule bundling and nuclear bridging in inner centromere protein gene (INCENP)-disrupted mice. Hum. Mol. Genet. 8, 1145–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Uren, A. G. et al. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol. 10, 1319–1328 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Hanson, K. K., Kelley, A. C. & Bienz, M. Loss of Drosophila borealin causes polyploidy, delayed apoptosis and abnormal tissue development. Development 132, 4777–4787 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Chang, C. J. et al. Drosophila INCENP is required for cytokinesis and asymmetric cell division during development of the nervous system. J. Cell Sci. 119, 1144–1153 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Kaitna, S. et al. The Aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr. Biol. 12, 798–812 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Rogers, E. et al. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol. 157, 219–229 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. George, O., Johnston, M. A. & Shuster, C. B. Aurora B kinase maintains chromatin organization during the MI to MII transition in surf clam oocytes. Cell Cycle 5, 2648–2656 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Wang, Y., Toppari, J., Parvinen, M. & Kallio, M. J. Inhibition of Aurora kinases perturbs chromosome alignment and spindle checkpoint signaling in rat spermatocytes. Exp. Cell Res. 312, 3459–3470 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Monje-Casas, F. et al. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128, 477–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yu, H. G. & Koshland, D. The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. J. Cell Biol. 176, 911–918 (2007). Shows that the CPC contributes to the maintenance of meiotic centromeric cohesion through Rts1/PP2A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Parra, M. T. et al. Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J. Cell Sci. 116, 961–974 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Parra, M. T. et al. A perikinetochoric ring defined by MCAK and Aurora-B as a novel centromere domain. PLoS Genet 2, e84 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  150. Uhlmann, F. Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO Rep. 2, 487–492 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, X. et al. Molecular analysis of kinetochore architecture in fission yeast. EMBO J. 24, 2919–2930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chan, G. K., Liu, S. T. & Yen, T. J. Kinetochore structure and function. Trends Cell Biol. 15, 589–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Kline-Smith, S. L., Sandall, S. & Desai, A. Kinetochore–spindle microtubule interactions during mitosis. Curr. Opin. Cell Biol. 17, 35–46 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bernat, R. L., Delannoy, M. R., Rothfield, N. F. & Earnshaw, W. C. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell 66, 1229–1238 (1991).

    Article  CAS  PubMed  Google Scholar 

  156. Desai, A. et al. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 17, 2421–2435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Oegema, K. et al. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Goshima, G., Saitoh, S. & Yanagida, M. Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev. 13, 1664–1677 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160, 25–39 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kline, S. L. et al. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol. 173, 9–17 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Maiato, H., Deluca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Earnshaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

FlyBase

MEI-S332

Protein Data Bank

2BFY

FURTHER INFORMATION

William C. Earnshaw's homepage

Cell Biology (2nd edition), a textbook by T.D. Pollard and W.C. Earnshaw with J. Lippincott-Schwartz and G. T. Johnson

Glossary

Polo family

A family of Ser/Thr protein kinases that have crucial roles in cell-cycle regulation, in the regulation of sister chromatid pairing and in the assembly and function of the mitotic spindle.

Inner centromere

The heterochromatin-rich region of the chromosome that is situated in between the two kinetochores of the paired sister chromatids.

Spindle midzone

Organized bundles of antiparallel microtubules at the centre of the spindle that form during anaphase and telophase.

Equatorial cell cortex

A region of the cell membrane where actin and myosin fibres assemble to form the contractile ring during anaphase.

Metaphase plate

A dynamic grouping of chromosomes positioned on a plane that is perpendicular to the spindle axis midway between spindle poles.

Inhibitor of apoptosis protein (IAP) family

Proteins that are characterized by their baculovirus IAP repeat (BIR) domains. They suppress apoptosis by interacting with and inhibiting the enzymatic activity of caspases.

Baculovirus IAP repeat (BIR) domain

This Zn2+-finger domain is important for protein–protein interactions and is specific to all proteins of the inhibitor of apoptosis (IAP) family.

CBF3 complex

A multisubunit protein complex in Saccharomyces cerevisiae that binds to centromeric DNA and initiates kinetochore assembly.

FRAP

(Fluorescence recovery after photobleaching). A technique that measures the dynamics of fluorescently tagged macromolecules within cellular substructures.

FLIP

(Fluorescence loss in photobleaching). A technique that measures the mobility of molecules by bleaching a defined region of cytoplasm and watching how this affects the population of fluorescent molecules in other regions of the cell.

Chromodomain

A conserved motif that is present in various chromatin proteins and is involved in binding methylated histone tails.

Condensin complex

A complex of two structural maintenance of chromosomes (SMC) subunits and three auxiliary non-SMC subunits. It is essential for the structural integrity of chromosomes.

Taxol

Also known as paclitaxel. A drug of major importance in cancer chemotherapy that suppresses microtubule dynamic instability, thereby stabilizing microtubules.

Dam1 complex

A multiprotein complex in budding yeast that encircles the plus ends of microtubules proximal to the kinetochore and which is important for kinetochore–microtubule interactions.

Aneuploidy

A condition in which the number of chromosomes is not an exact multiple of the haploid set.

Anaphase promoting complex/cyclosome

(APC/C). A multisubunit E3 ubiquitin ligase that targets proteins for proteasome-mediated degradation by attaching polyubiquitin chains to them. It has a key role in regulating the eukaryotic cell cycle.

Chromosome congression

The movement of correctly attached chromosomes to form a metaphase plate at the midplane of the mitotic spindle.

Shugoshin family

A family of proteins that protect centromeric cohesin from cleavage by separase, possibly by recruiting protein phosphatase-2A to centromeres.

Midbody

A dense structure that is derived from the remains of the central spindle during late telophase and is present at the intercellular bridge during cytokinesis.

Bivalent

A pair of homologous (maternal plus paternal) chromosomes that are linked together after prophase of meiosis I.

Chiasmata

Chromosomal structures that interlink homologous chromosomes at the site of mature crossovers during meiosis I.

Synaptonemal complex

A proteinaceous complex that links pairs of homologous chromosomes during pachytene of meiosis I. It forms during zygotene and disassembles during diplotene stages of meiosis I prophase.

Pachytene

A stage of the prophase of meiosis I during which the homologous chromosomes are paired lengthwise, forming thick threads, and are linked by the synaptonemal complex.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruchaud, S., Carmena, M. & Earnshaw, W. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8, 798–812 (2007). https://doi.org/10.1038/nrm2257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing