The third dimension bridges the gap between cell culture and live tissue


Moving from cell monolayers to three-dimensional (3D) cultures is motivated by the need to work with cellular models that mimic the functions of living tissues. Essential cellular functions that are present in tissues are missed by 'petri dish'-based cell cultures. This limits their potential to predict the cellular responses of real organisms. However, establishing 3D cultures as a mainstream approach requires the development of standard protocols, new cell lines and quantitative analysis methods, which include well-suited three-dimensional imaging techniques. We believe that 3D cultures will have a strong impact on drug screening and will also decrease the use of laboratory animals, for example, in the context of toxicity assays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Three-dimensional culture models.
Figure 2: Imaging of cellular spheroids.
Figure 3: Three-dimensional cell biology with light-sheet-based fluorescence microscopy.


  1. 1

    Bissell, M. J., Rizki A . & Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Curr. Opin. Cell Biol. 15, 753–762 (2003).

  2. 2

    Marx, U. & Sandig, V. Drug Testing in vitro: Breakthroughs and Trends in Cell Culture Technology. (Wiley-VCH, Weinheim, 2006).

  3. 3

    Kleinman, H. K., Philp, D. & Hoffman, M. P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotech. 14, 526–532 (2003).

  4. 4

    Bissel, M. J., Radisky, D. C., Rizki, A., Weaver, V. M. & Petersen, O. W. The organizing principle: microevironmental influences in the normal and malignant breast. Differentiation 70, 537–546 (2002).

  5. 5

    Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

  6. 6

    Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

  7. 7

    Wang, F. et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

  8. 8

    Paszek M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

  9. 9

    Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004).

  10. 10

    Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

  11. 11

    Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

  12. 12

    Walpita, D. & Hay, E. Studying actin-dependent processes in tissue culture. Nature Rev. Mol. Cell Biol. 3, 137–141 (2002).

  13. 13

    Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

  14. 14

    Meshel, A. S., Wei, Q., Adelstein, R. S. & Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biol. 7, 157–164 (2005).

  15. 15

    Di Milla, P. A., Barbee, K. & Lauffenburger, D. A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37 (1991).

  16. 16

    Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

  17. 17

    Zaman, M. H., Kamm, R. D., Matsudaira, P. & Lauffenburger, D. A. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005).

  18. 18

    O'Brien, L. E., Zegers, M. M. P. & Mostov, K. E. Building epithelial architecture: insight from three-dimensional culture models. Nature Rev. Mol. Cell Biol. 3, 531–537 (2002).

  19. 19

    Mostov, K. E., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003).

  20. 20

    Montesano, R. et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

  21. 21

    Pollack, A. L., Apodaca, G. & Mostov, K. E. Hepatocyte growth factor induces MDCK cell morphogenesis without causing loss of tight junction functional integrity. Am. J. Physiol. Cell Physiol. 286, C482–C494 (2004).

  22. 22

    O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol. 3, 831–838 (2001).

  23. 23

    Zegers, M. M. P., O'Brien, L., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol. 13, 169–173 (2003).

  24. 24

    Grant, M. R., Mostov, K. E., Tlsty, T. D. & Hunt, C. A. Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput. Biol. 2, 1193–1209 (2006).

  25. 25

    Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

  26. 26

    Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

  27. 27

    Ghosh, S. et al. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J. Cell Physiol. 204, 522–531 (2005).

  28. 28

    Delcommenne, M. & Streuli, C. H. Control of integrin expression by extracellular matrix. J. Biol. Chem. 270, 26794–26801 (1995).

  29. 29

    Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

  30. 30

    Kulesa, P. M. & Fraser, S. E. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991–995 (2002).

  31. 31

    Kulesa, P. M. et al. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc. Natl Acad. Sci. USA 103, 3752–3757 (2006).

  32. 32

    US Department of Human and Health Services. US Food and Drug Administration (FDA). Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. FDA web site[online], (2004).

  33. 33

    Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nature Biotech. 22, 1253–1259 (2004).

  34. 34

    Bhadriraju, K. & Chen, C. S. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 11, 612–620 (2002).

  35. 35

    Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F. & Ebner, R. The use of 3D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen. 9, 273–284 (2004).

  36. 36

    Gómez-Lechón, M. J. et al. Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrix. J. Cell Physiol. 177, 553–562 (1998).

  37. 37

    Berthiaume, F., Moghe, P. V., Toner, M. & Yarmush, M. L. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10, 1471–1484 (1996).

  38. 38

    Semino, C. E., Merok, J. S., Crane, G. G., Panagiotakos, G. & Zhang, S. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71, 262–270 (2003).

  39. 39

    Powers, M. J. et al. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 8, 499–513 (2002).

  40. 40

    Hadjantonakis, A. -K., Dickinson, M. E., Fraser, S. E. & Papaioannou, V. E. Technicolour transgenics: imaging tool for functional genomics in the mouse. Nature Rev. Genet. 4, 613–625 (2003).

  41. 41

    Toda, S. et al. A new organotypic culture of thyroid tissue maintains three-dimensional follicles with C cells for a long term. Biochem. Biophys. Res. Comm. 294, 906–911 (2002).

  42. 42

    Holopainen, I. E. Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem. Res. 30, 1521–1528 (2005).

  43. 43

    Watanabe, Y. & Costantini, F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev. Biol. 271, 98–108 (2004).

  44. 44

    Timmins, N. E., Hardling, F. J., Smart, C., Brown, M. A. & Nielsen, L. K. Method for the generation and cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. Cell Tissue Res. 320, 207–210 (2005).

  45. 45

    Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003).

  46. 46

    Castañeda, F. & Kinne, R. K. H. Short exposure to millimolar concentrations of ethanol induces apoptotic cell death in multicellular HepG2 spheroids. J. Cancer Res. Clin. Oncol. 126, 305–310 (2000).

  47. 47

    Mueller-Klieser, W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–C1123 (1997).

  48. 48

    Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988).

  49. 49

    Sutherland, R. M., McCredie, J. A. & Inch, W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl Cancer Inst. 46, 113–120 (1971).

  50. 50

    Kale, S. et al. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nature Biotech. 18, 954–958 (2000).

  51. 51

    Ivascu, A. & Kubbies, M. Rapid generation of single-tumour spheroids for high throughput cell function and toxicity analysis. J. Biomol. Screen. 11, 922–932 (2006).

  52. 52

    Zhang, X. et al. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol. Prog. 21, 1289–1296 (2005).

  53. 53

    Stein, A. M., Demuth, T., Mobley D., Berens, M. & Sander L. M. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J. 92, 356–365 (2007).

  54. 54

    Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C. & Freyer, J. P. A multiscale model for avascular tumor growth. Biophys. J. 89, 3884–3894 (2005).

  55. 55

    Butor, C. & Davoust, J. Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports, Exp. Cell Res. 203, 115–127 (1992).

  56. 56

    Horch, R. E., Kopp, J., Beier, J. & Bach, A. D. Tissue engineering of cultured skin substitutes. J. Cell. Mol. Med. 9, 592–608 (2005).

  57. 57

    Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

  58. 58

    Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures Methods 30, 256–268 (2003).

  59. 59

    Lee, G. L., Kenny, P. A., Lee E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods 4, 359–365 (2007).

  60. 60

    O'Brien, L. E. et al. Morphological and biochemical analysis of Rac1 in three-dimensional epithelial cell cultures. Methods Enzymol. 406, 676–691 (2006).

  61. 61

    Gelain, F., Bottai, D., Vescovi, A & Zhang, S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE 1, e119 (2006).

  62. 62

    Horii, A. Wang, X., Gelain, F. & Zhang, S. Biological designer self-assembling peptide scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE 2, e190 (2007).

  63. 63

    Zhang, S. Beyond the Petri dish. Nature Biotech. 22, 151–152 (2004).

  64. 64

    Dickinson, M. E. Multimodal imaging of mouse development: tools for the postgenomic era. Dev. Dyn. 235, 2386–2400 (2006).

  65. 65

    Verveer, P. et al. High-resolution three-dimensional imaging of large specimens with light-sheet based microscopy. Nature Methods 4, 311–313 (2007).

  66. 66

    Centonze, V. E. & White, J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024 (1998).

  67. 67

    Gilbert, R. J., Hoffman, M., Capitano, A. & So, P. T. C. Imaging of three-dimensional epithelial architecture and function in cultured CaCo2a monolayers with two-photon excitation microscopy. Microsc. Res. Tech. 51, 204–210 (2000).

  68. 68

    Göbel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73–79 (2007).

  69. 69

    Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotech. 21, 1369–1377 (2003).

  70. 70

    Stelzer, E. H. K. et al. Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the observation volume. Opt. Commun. 104, 223–228 (1994).

  71. 71

    Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

  72. 72

    Sharpe, J. et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002).

  73. 73

    Alanentalo, T. et al. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nature Methods 4, 31–33 (2007).

  74. 74

    Sharma, M., Verma, Y., Rao, K. D., Nair, R. & Gupta, P. K. Imaging growth dynamics of tumour spheroids using optical coherence tomography. Biotechnol. Lett. 29, 273–278 (2007).

  75. 75

    Stelzer, E. H. K. & Lindek, S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal θ microscopy. Opt. Commun. 111, 536–547 (1994).

  76. 76

    Hell, S. W. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).

  77. 77

    Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999).

  78. 78

    Klar, T. A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

  79. 79

    Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nature Methods 3, 721–723 (2006).

  80. 80

    Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

  81. 81

    Greger, K., Swoger, J. & Stelzer, E. H. K. Basic building units and properties of a fluorescence single plane illumination microscope. Rev. Sci. Instr. 78, 023705 (2007).

  82. 82

    Swoger, J., Huisken, J. & Stelzer E. H. K. Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt. Lett. 28, 1654–1656 (2003).

  83. 83

    Folkman, J. & Hochberg, M. Self-regulation of growth in three-dimensions. J. Exper. Med. 138, 745–753 (1973).

  84. 84

    Walenta, S., Doetsch, J., Mueller-Klieser, W. & Kunz-Schughart, L. A. Metabolic imaging in multicellular spheroids of oncogene-transfected fibroblasts. J. Histochem. Cytochem. 48, 509–522 (2000).

Download references


The authors thank M. Marcello for his contribution to manuscript preparation and P. Verveer for providing material presented in Figure 3. F.P. and E.H.K.S. acknowledge the Forschungsprogramm 'Optische Technologien' der Landesstiftung Baden-Württenberg gGmbH for financial support. E.G.R. and E.H.K.S. acknowledge the support from the German Ministry of Research (BMBF – Projekt QuantPro).

Author information

Correspondence to Ernst H. K. Stelzer.

Ethics declarations

Competing interests

Francesco Pampaloni, Emmanuel G. Reynaud and Ernst H. K. Stelzer

The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology 8 August 2007 (doi:10.1038/nrm2236)

The authors applied for a patent concerning specimen preparation and a SPIM cell culture chamber.

Related links

Related links


European Molecular Biology Laboratory

Multiphoton excitation imaging DRBIO Webb Research Group


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pampaloni, F., Reynaud, E. & Stelzer, E. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8, 839–845 (2007).

Download citation

Further reading