Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis

Key Points

  • Biological tissues exhibit two contradictory properties: they have a robust architecture that is required for their maintenance and resistance to stress, and they can be extensively remodelled during development or regeneration.

  • Tissue morphogenesis requires the precise control of cell shape and cell dynamics. Cell shape is governed by cell mechanics, which explains how a set of intracellular and extracellular forces controls the cell structure.

  • Cells are complex structures, the shape of which can be adequately explained using the concept of surface tension. Surface tension is an equilibrium property that does not explain the detailed course of events but does explain the organization of a cell and of groups of contacting cells.

  • It is possible to draw analogies between the long-term (minutes to hours) behaviour of adhering cells and viscous fluids. Tissue surface tension controlled by intercellular adhesion describes this unique property that is manifested during cell sorting. The differential adhesion hypothesis relies on this physical property.

  • Intercellular surface tension extends and adapts the concept of tissue surface tension at the cellular level to explain cell shape and the geometry of contacting cells, such as in an epithelium. Cell shape is mainly controlled by two opposing systems: intercellular adhesion that increases the surface of contacts, and cortical tension that reduces cell contacts. The organization and dynamics of cortical actin networks and their dynamic interaction with or tethering to the plasma membrane provide a mechanistic understanding of intercellular surface tension at the molecular level.

  • It is possible to explain several tissue morphogenetic events during development through the spatial and temporal regulation of intercellular surface tension. For example, apical cell constriction controls tissue bending whereas cell intercalation drives tissue extension. In both cases, cortical tension is controlled by myosin-II actin filaments that regulate cell contacts and cell shape.

  • Multicellular assemblies of cells often produce geometrically ordered patterns. The spatial regulation of intercellular adhesion controls cell shape and emergent cell patterns.

Abstract

Embryonic morphogenesis requires the execution of complex mechanisms that regulate the local behaviour of groups of cells. The orchestration of such mechanisms has been mainly deciphered through the identification of conserved families of signalling pathways that spatially and temporally control cell behaviour. However, how this information is processed to control cell shape and cell dynamics is an open area of investigation. The framework that emerges from diverse disciplines such as cell biology, physics and developmental biology points to adhesion and cortical actin networks as regulators of cell surface mechanics. In this context, a range of developmental phenomena can be explained by the regulation of cell surface tension.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analogy between fluids and tissues.
Figure 2: Control of cell shape by adhesion and cortical tension.
Figure 3: Molecular interplay between cortical tension and adhesion.
Figure 4: Apical constriction and tissue bending.
Figure 5: Dynamic cell patterns during intercalation.
Figure 6: Building hierarchical cell patterns with adhesion.

Similar content being viewed by others

References

  1. Gonzalez-Gaitan, M. Signal dispersal and transduction through the endocytic pathway. Nature Rev. Mol. Cell Biol. 4, 213–224 (2003).

    Article  CAS  Google Scholar 

  2. Tabata, T. & Takei, Y. Morphogens, their identification and regulation. Development 131, 703–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tree, D. R., Ma, D. & Axelrod, J. D. A three-tiered mechanism for regulation of planar cell polarity. Semin. Cell Dev. Biol. 13, 217–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Steinberg, M. S. & Poole, T. J. in Cell Behavior (eds Bellairs, R. & Curtis, A. S. G.) 583–607 (Cambidge University Press, Cambridge, 1982).

    Google Scholar 

  5. Thoumine, O. & Ott, A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110, 2109–2116 (1997).

    CAS  PubMed  Google Scholar 

  6. Forgacs, G., Foty, R. A., Shafrir, Y. & Steinberg, M. S. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227–2234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomson, D. W. On Growth and Form (Cambridge University Press, New York, 1961).

    Google Scholar 

  8. Forgacs, G. & Newman, S. A. Biological Physics of the Developing Embryo (Cambridge University Press, New York, 2005).

    Book  Google Scholar 

  9. Israelachvili, J. Intermolecular and Surface Forces (Academic Press, New York, 1992).

    Google Scholar 

  10. Beysens, D. A., Forgacs, G. & Glazier, J. A. Cell sorting is analogous to phase ordering in fluids. Proc. Natl Acad. Sci. USA 97, 9467–9471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).

    Article  Google Scholar 

  12. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963).

    Article  CAS  PubMed  Google Scholar 

  13. Foty, R. A., Pfleger, C. M., Forgacs, G. & Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–1620 (1996).

    CAS  PubMed  Google Scholar 

  14. Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005). Shows that the surface tension of a group of cells, which express different levels of transfected cadherins on their surfaces, is proportional to the cadherin concentration.

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi, T. & Carthew, R. W. Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–652 (2004). Shows that the spatial organization and geometry of cone cells in the fly retina obey the same physical principles that govern the shapes of groups of soap bubbles.

    Article  CAS  PubMed  Google Scholar 

  16. Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Mombach, J. C., Glazier, J. A., Raphael, R. C. & Zajac, M. Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys. Rev. Lett. 75, 2244–2247 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Niessen, C. M. & Gumbiner, B. M. Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J. Cell Biol. 156, 389–399 (2002). Provides evidence that cell sorting by cadherin adhesion is not achieved by selective homophilic interactions of cadherins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prakasam, A. K., Maruthamuthu, V. & Leckband, D. E. Similarities between heterophilic and homophilic cadherin adhesion. Proc. Natl Acad. Sci. USA 103, 15434–15439 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E-cadherin–β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinberg, M. S. & Takeichi, M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl Acad. Sci. USA 91, 206–209 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Godt, D. & Tepass, U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Reyes, A. & St Johnston, D. Patterning of the follicle cell epithelium along the anterior–posterior axis during Drosophila oogenesis. Development 125, 2837–2846 (1998).

    CAS  PubMed  Google Scholar 

  24. Milan, M., Weihe, U., Perez, L. & Cohen, S. M. The LRR proteins capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing. Cell 106, 785–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dahmann, C. & Basler, K. Opposing transcriptional outputs of Hedgehog signaling and engrailed control compartmental cell sorting at the Drosophila A/P boundary. Cell 100, 411–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Needham, D. & Hochmuth, R. M. A sensitive measure of surface stress in the resting neutrophil. Biophys. J. 61, 1664–1670 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsai, M. A., Frank, R. S. & Waugh, R. E. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophys. J. 66, 2166–2172 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sheetz, M. P. Cell control by membrane–cytoskeleton adhesion. Nature Rev. Mol. Cell Biol. 2, 392–396 (2001).

    Article  CAS  Google Scholar 

  29. Evans, E. & Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989). Shows on the basis of single-cell micropipet aspiration that the concept of cortical tension can account for cell shape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burton, K. & Taylor, D. L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Paluch, E., van der Gucht, J. & Sykes, C. Cracking up: symmetry breaking in cellular systems. J. Cell Biol. 175, 687–692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bray, D. & White, J. G. Cortical flow in animal cells. Science 239, 883–888 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Paluch, E., Piel, M., Prost, J., Bornens, M. & Sykes, C. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89, 724–733 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Humphrey, D., Duggan, C., Saha, D., Smith, D. & Kas, J. Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Le Goff, L., Amblard, F. & Furst, E. M. Motor-driven dynamics in actin–myosin networks. Phys. Rev. Lett. 88, 181011–181014 (2002).

    Google Scholar 

  36. Murthy, K. & Wadsworth, P. Myosin-II-dependent localization and dynamics of F-actin during cytokinesis. Curr. Biol. 15, 724–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Urven, L. E., Yabe, T. & Pelegri, F. A role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo. J. Cell Sci. 119, 4342–4352 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Hickson, G. R., Echard, A. & O'Farrell, P. H. Rho-kinase controls cell shape changes during cytokinesis. Curr. Biol. 16, 359–370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hird, S. N. & White, J. G. Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans. J. Cell Biol. 121, 1343–1355 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Plateau, J. Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires (Gauthier-Villars, Paris, 1873).

    Google Scholar 

  42. Gibson, M. C., Patel, A. B., Nagpal, R. & Perrimon, N. The emergence of geometric order in proliferating metazoan epithelia. Nature 442, 1038–1041 (2006). Provides the basic principles that underlie the emergence of geometric order in proliferating epithelia.

    Article  CAS  PubMed  Google Scholar 

  43. De Vries, W. N. et al. Maternal β-catenin and E-cadherin in mouse development. Development 131, 4435–4445 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Bershadsky, A. Magic touch: how does cell–cell adhesion trigger actin assembly? Trends Cell Biol. 14, 589–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Gates, J. & Peifer, M. Can 1000 reviews be wrong? Actin, α-catenin, and adherens junctions. Cell 123, 769–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell 123, 889–901 (2005). Together with reference 20, demonstrates that the E-cadherin–β-catenin-α-catenin ternary complex does not bind directly to actin filaments. This leads to a re-evaluation of the role of actin in stabilization of E-cadherin homophilic complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pilot, F., Philippe, J. M., Lemmers, C. & Lecuit, T. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature 442, 580–584 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Ehrlich, J. S., Hansen, M. D. & Nelson, W. J. Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell–cell adhesion. Dev. Cell 3, 259–270 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005). Shows that the apically secreted FOG protein causes apical constriction of epithelial cells in D. melanogaster gastrulation through the upregulation of an acto-myosin-II network tethered to the plasma membrane through the adherens junctions.

    CAS  PubMed  Google Scholar 

  52. Munoz, J. J., Barrett, K. & Miodownik, M. A deformation gradient decomposition method for the analysis of the mechanics of morphogenesis. J. Biomech. 1372–1380 (2006).

  53. Wei, L. et al. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128, 2953–2962 (2001).

    CAS  PubMed  Google Scholar 

  54. Hacker, U. & Perrimon, N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274–284 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nikolaidou, K. K. & Barrett, K. A Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol. 14, 1822–1826 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007). Identifies the transmembrane protein T48 that promotes D. melanogaster mesoderm invagination by recruiting the cytoskeletal regulator RhoGEF2 to the sites of apical constriction.

    PubMed  Google Scholar 

  57. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Brouns, M. R., Matheson, S. F. & Settleman, J. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nature Cell Biol. 3, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 13, 2125–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Asha, H., de Ruiter, N. D., Wang, M. G. & Hariharan, I. K. The Rap1 GTPase functions as a regulator of morphogenesis in vivo. EMBO J. 18, 605–615 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Hart, M. J. et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science 280, 2112–2114 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Kwan, K. M. & Kirschner, M. W. A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis. Development 132, 4599–4610 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lin, F. et al. Essential roles of Gα12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements. J. Cell Biol. 169, 777–787 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fox, D. T. & Peifer, M. Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila. Development 134, 567–578 (2007). Identifies the Abl kinase as a novel regulator of ventral furrow invagination through the regulation of actin organization.

    Article  CAS  PubMed  Google Scholar 

  66. Menzies, A. S. et al. Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J. Neurosci. 24, 8029–8038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Lanier, L. M. et al. Mena is required for neurulation and commissure formation. Neuron 22, 313–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Brouns, M. R. et al. The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 127, 4891–4903 (2000).

    CAS  PubMed  Google Scholar 

  70. Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21, 1259–1272 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Hildebrand, J. D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203 (2005). Describes how the actin-binding protein Shroom controls epithelial cell shape by regulating the formation of an acto-myosin network in the apical junctional region. This is a unique analysis of vertebrate apical constriction at the cellular level.

    Article  CAS  PubMed  Google Scholar 

  72. Guha, M., Zhou, M. & Wang, Y. L. Cortical actin turnover during cytokinesis requires myosin II. Curr. Biol. 15, 732–736 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Wei, S. Y. et al. Echinoid is a component of adherens junctions that cooperates with DE-cadherin to mediate cell adhesion. Dev. Cell 8, 493–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Laplante, C. & Nilson, L. A. Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development 133, 3255–3264 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Keller, R. Mechanisms of elongation in embryogenesis. Development 133, 2291–2302 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Irvine, K. D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    CAS  PubMed  Google Scholar 

  77. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004). Demonstrates that local forces mediated by myosin-II at cell junctions and consequent cell-shape changes are responsible for cell intercalation during germband elongation in D. melanogaster .

    Article  CAS  PubMed  Google Scholar 

  78. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Ribeiro, C., Ebner, A. & Affolter, M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev. Cell 2, 677–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Ribeiro, C., Neumann, M. & Affolter, M. Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Curr. Biol. 14, 2197–2207 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Harris, T. J. & Peifer, M. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J. Cell Biol. 167, 135–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Jung, A. C., Ribeiro, C., Michaut, L., Certa, U. & Affolter, M. Polychaetoid/ZO-1 is required for cell specification and rearrangement during Drosophila tracheal morphogenesis. Curr. Biol. 16, 1224–1231 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Major, R. J. & Irvine, K. D. Localization and requirement for myosin II at the dorsal–ventral compartment boundary of the Drosophila wing. Dev. Dyn. 235, 3051–3058 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Major, R. J. & Irvine, K. D. Influence of Notch on dorsoventral compartmentalization and actin organization in the Drosophila wing. Development 132, 3823–3833 (2005). References 84 and 85 characterize the polarized regulation of cell surface properties at a compartment boundary, in particular the formation of an acto-myosin network required for cell segregation.

    Article  CAS  PubMed  Google Scholar 

  86. Franke, J. D., Montague, R. A. & Kiehart, D. P. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr. Biol. 15, 2208–2221 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Ready, D. F., Hanson, T. E. & Benzer, S. Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53, 217–240 (1976).

    Article  CAS  PubMed  Google Scholar 

  88. Bao, S. & Cagan, R. Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev. Cell 8, 925–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Zallen, J. A. & Zallen, R. Cell-pattern disordering during convergent extension in Drosophila. J. Phys. Condens. Matter 16, S5073–S5080 (2004).

    Article  CAS  Google Scholar 

  90. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005). Shows how the geometrical ordering of epithelial cells that accompanies the establishment of planar cell polarity is controlled by E-cadherin trafficking.

    Article  CAS  PubMed  Google Scholar 

  91. Knox, A. L. & Brown, N. H. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295, 1285–1288 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Leckband, D. & Prakasam, A. Mechanism and dynamics of cadherin adhesion. Annu. Rev. Biomed. Eng. 8, 259–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Blair, S. S. Lineage compartments in Drosophila. Curr. Biol. 13, R548–R551 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Kiecker, C. & Lumsden, A. Compartments and their boundaries in vertebrate brain development. Nature Rev. Neurosci. 6, 553–564 (2005).

    Article  CAS  Google Scholar 

  95. Shen, J. & Dahmann, C. The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Dev. Biol. 279, 31–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Blair, S. S. Developmental biology: boundary lines. Nature 424, 379–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Rauskolb, C., Correia, T. & Irvine, K. D. Fringe-dependent separation of dorsal and ventral cells in the Drosophila wing. Nature 401, 476–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Odell, G. M., Oster, G., Alberch, P. & Burnside, B. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85, 446–462 (1981).

    Article  CAS  PubMed  Google Scholar 

  99. Hardin, J. & Keller, R. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103, 211–230 (1988).

    CAS  PubMed  Google Scholar 

  100. Kimberly, E. L. & Hardin, J. Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev. Biol. 204, 235–250 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Schoenwolf, G. C. & Franks, M. V. Quantitative analyses of changes in cell shapes during bending of the avian neural plate. Dev. Biol. 105, 257–272 (1984).

    Article  CAS  PubMed  Google Scholar 

  102. Kam, Z., Minden, J. S., Agard, D. A., Sedat, J. W. & Leptin, M. Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy. Development 112, 365–370 (1991).

    CAS  PubMed  Google Scholar 

  103. Sweeton, D., Parks, S., Costa, M. & Wieschaus, E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112, 775–789 (1991).

    CAS  PubMed  Google Scholar 

  104. Lee, J. Y. et al. Wnt/Frizzled signaling controls C. elegans gastrulation by activating actomyosin contractility. Curr. Biol. 16, 1986–1997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anstrom, J. A. Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos. J. Exp. Zool. 264, 312–322 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Davidson, L. A., Koehl, M. A., Keller, R. & Oster, G. F. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018 (1995).

    CAS  PubMed  Google Scholar 

  107. Keller, R. E. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216, 81–101 (1981).

    Article  CAS  PubMed  Google Scholar 

  108. Larsen, C. W., Hirst, E., Alexandre, C. & Vincent, J. P. Segment boundary formation in Drosophila embryos. Development 130, 5625–5635 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Brodu, V. & Casanova, J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev. 20, 1817–1828 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Myat, M. M., Isaac, D. D. & Andrew, D. J. Early genes required for salivary gland fate determination and morphogenesis in Drosophila melanogaster. Adv. Dent. Res. 14, 89–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Chandrasekaran, V. & Beckendorf, S. K. Tec29 controls actin remodeling and endoreplication during invagination of the Drosophila embryonic salivary glands. Development 132, 3515–3524 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work could unfortunately not be cited because of space limitations. This review is the result of stimulating discussions between the Lecuit and Lenne laboratories over the past two years. We wish to thank all of our biologist and physicist colleagues in Marseille and F. Graner (Grenoble) for their input to clarify several issues addressed here. Y. Azou, C. Bertet, M. Cavey, B. Hampoelz, L. LeGoff, M. Rauzi and P. Verant made comments on the manuscript. We thank D. Sweeton and E. Wieschaus for the image in Figure 4a, V. Morel for Figure 5a, and J. Gros for preparing Figures 4c and 4d. T.L. is supported by the National Centre for Scientific Research (CNRS), the Association pour la recherche contre le Cancer (ARC), the Fondation Schlumberger pour l'Education et la Recherche (FSER), the EMBO Young Investigator Programme, and an ANR-Blanc grant together with P-F.L. P-F.L. is supported by the CNRS, Région PACA, ANR and the European Community.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Thomas Lecuit's homepage

Pierre-François Lenne's homepage

Glossary

Morphogen

A diffusing substance that induces different cell fates through the formation of a concentration-dependent gradient from a localized source.

Planar polarity

The structural asymmetry of cells in the plane of a tissue. It characterizes the direction of cell elongation, cell division, cell movement and differentiation.

Plasticity

The ability to undergo a persistent deformation.

Tissue homeostasis

The property of biological tissues to remain structurally and functionally stable in a physiological environment.

Sorting

The ability of intermixed, adhesive and mobile cell populations to separate into immiscible adjacent tissues.

Surface tension

The free-energy change when the surface of a medium is increased by a unit area. Strictly speaking, the term 'interfacial tension' should be used instead of 'surface tension' when the liquid adjoins another liquid or a solid. For simplicity, we use the term 'surface tension' in this article.

Tissue surface tension

The apparent surface tension of a tissue, caused by cohesive interactions (adhesion) between cells. Increasing adhesion in a tissue increases tissue surface tension.

Intercellular surface tension

The apparent surface tension of two cells that are in contact, caused by the opposite effects of cortical tension and intercellular adhesion. In contrast to the case of tissue surface tension, increased adhesion lowers intercellular surface tension.

Cortical tension

The apparent cell surface tension due to the contractile microfilaments of the cell cortex and their interaction with the membrane.

Affinity

The tendency of cells with similar developmental origins to aggregate.

Rhombomere

An iterative subdivision of the vertebrate hindbrain along the antero-posterior axis.

Selector gene

A gene that specifies (selects) a developmental pathway, as opposed to a 'realisator' gene that executes downstream cellular responses (e.g. adhesion).

Cell adhesion molecule

A transmembrane protein on the cell surface that binds to other cell adhesion molecules on the surface of another contacting cell or to the extracellular matrix.

Homophilic association

Trans-association of similar cell adhesion molecules at contacting cell surfaces.

Heterophilic association

Trans-association of different cell adhesion molecules at contacting cell surfaces.

Nurse cells

Polyploid cells in the Drosophila melanogaster ovary that are connected by cytoplasmic bridges and feed the oocyte.

Cell surface tension

The apparent surface tension of a cell.

Visco-elasticity

The mechanical response properties of a material in response to a load. Elasticity refers to the ability to recover from a deformation. Viscosity describes a resistance to a flow due to molecular interactions.

Adherens junction

Molecular complexes that are formed by cadherins and associated molecules stabilized by the actin cytoskeleton. They connect two contacting cells.

Apical constriction

Reduction of the apparent apical surface area in an epithelial cell. Apical constriction drives tissue bending.

Intercalation

A process whereby cells exchange neighbours in a polarized fashion in the plane of a tissue during convergent extension movements.

Convergent extension

Bilateral symmetrical movement of cells that converge towards a given axis, thereby contributing to the joint extension of the tissue. Convergent extension is driven by intercalation and polarized migration.

Germband

Region of the embryo (also called ventral plate) where the body of the embryo will develop. The rest of the cells in the blastoderm become part of a membrane (the serosa) that forms the yolk sac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecuit, T., Lenne, PF. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 8, 633–644 (2007). https://doi.org/10.1038/nrm2222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing