Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microtubule-organizing centres: a re-evaluation


The number, length, distribution and polarity of microtubules are largely controlled by microtubule-organizing centres, which nucleate and anchor microtubule minus ends in a process that requires γ-tubulin. Here we discuss recent evidence indicating that γ-tubulin-dependent formation of new microtubules is not restricted to conventional microtubule-organizing centres. These findings suggest that the spatio-temporal control of microtubule nucleation is more complex than previously thought, leading us to a re-evaluation of the concept of the microtubule-organizing center.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Localization of γ-tubulin in the mitotic spindle.
Figure 2: Amplification model for the function of the γ-tubulin ring complex in spindle assembly.
Figure 3: Models for the organization of γ-tubulin complexes at microtubule-organizing centres.
Figure 4: Regulation of microtubule nucleation.


  1. 1

    Pickett-Heaps, J. D. The evolution of the mitotic apparatus, an attempt at comparative ultrastructural cytology in dividing cell plants. Cytobios 1, 257–280 (1969).

    Google Scholar 

  2. 2

    Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol. 3, E28–E34 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Galjart, N. CLIPs and CLASPs and cellular dynamics. Nature Rev. Mol. Cell Biol. 6, 487–498 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A. & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547–1550 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Basto, R. et al. Flies without centrioles. Cell 125, 1375–1386 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Oakley, C. E. & Oakley, B. R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662–664 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, M. K. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289–1301 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Gunawardane, R. N., Martin, O. C. & Zheng, Y. Characterization of a new γ TuRC subunit with WD repeats. Mol. Biol. Cell 14, 1017–1026 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Luders, J., Patel, U. K. & Stearns, T. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nature Cell Biol. 8, 137–147 (2006).

    Article  Google Scholar 

  11. 11

    Haren, L. et al. NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172, 505–515 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Fuller, S. D. et al. The core of the mammalian centriole contains γ-tubulin. Curr. Biol. 5, 1384–1393 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Wiese, C. & Zheng, Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nature Cell Biol. 2, 358–364 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  15. 15

    Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Mogensen, M. M. Microtubule release and capture in epithelial cells. Biol. Cell 91, 331–341 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Schmit, A. C. Acentrosomal microtubule nucleation in higher plants. Int. Rev. Cytol. 220, 257–289 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Ehrhardt, D. W. & Shaw, S. L. Microtubule dynamics and organization in the plant cortical array. Annu. Rev. Plant Biol. 57, 859–875 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Binarova, P. et al. γ -tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18, 1199–1212 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Pastuglia, M. et al. γ -tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18, 1412–1425 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Murata, T. et al. Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nature Cell Biol. 7, 961–968 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Mazia, D. Centrosomes and mitotic poles. Exp. Cell Res. 153, 1–15 (1984).

    CAS  Article  Google Scholar 

  24. 24

    Tassin, A. M., Maro, B. & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35–46 (1985).

    CAS  Article  Google Scholar 

  25. 25

    Musa, H., Orton, C., Morrison, E. E. & Peckham, M. Microtubule assembly in cultured myoblasts and myotubes following nocodazole induced microtubule depolymerisation. J. Muscle Res. Cell Motil. 24, 301–308 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Bugnard, E., Zaal, K. J. & Ralston, E. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskeleton 60, 1–13 (2005).

    Article  Google Scholar 

  27. 27

    Hagiwara, H., Kano, A., Aoki, T., Ohwada, N. & Takata, K. Localization of γ-tubulin to the basal foot associated with the basal body extending a cilium. Histochem. J. 32, 669–671 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Hard, R. & Rieder, C. L. Muciliary transport in newt lungs: the ultrastructure of the ciliary apparatus in isolated epithelial sheets and in functional Triton-extracted models. Tissue Cell 15, 227–243 (1983).

    CAS  Article  Google Scholar 

  29. 29

    Sawin, K. E. & Tran, P. T. Cytoplasmic microtubule organization in fission yeast. Yeast 23, 1001–1014 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Zimmerman, S., Tran, P. T., Daga, R. R., Niwa, O. & Chang, F. Rsp1p, a J domain protein required for disassembly and assembly of microtubule organizing centers during the fission yeast cell cycle. Dev. Cell 6, 497–509 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Janson, M. E., Setty, T. G., Paoletti, A. & Tran, P. T. Efficient formation of bipolar microtubule bundles requires microtubule-bound γ-tubulin complexes. J. Cell Biol. 169, 297–308 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Daga, R. R., Lee, K. G., Bratman, S., Salas-Pino, S. & Chang, F. Self-organization of microtubule bundles in anucleate fission yeast cells. Nature Cell Biol. 8, 1108–1113 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Carazo-Salas, R. E. & Nurse, P. Self-organization of interphase microtubule arrays in fission yeast. Nature Cell Biol. 8, 1102–1107 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Reilein, A. & Nelson, W. J. APC is a component of an organizing template for cortical microtubule networks. Nature Cell Biol. 7, 463–473 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Reilein, A., Yamada, S. & Nelson, W. J. Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J. Cell Biol. 171, 845–855 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Chabin-Brion, K. et al. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell 12, 2047–2060 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Rios, R. M., Sanchis, A., Tassin, A. M., Fedriani, C. & Bornens, M. GMAP-210 recruits γ-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118, 323–335 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Barr, F. A. & Egerer, J. Golgi positioning: are we looking at the right MAP? J. Cell Biol. 168, 993–998 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Lajoie-Mazenc, I. et al. Recruitment of antigenic γ-tubulin during mitosis in animal cells: presence of γ-tubulin in the mitotic spindle. J. Cell Sci. 107, 2825–2837 (1994).

    CAS  PubMed  Google Scholar 

  40. 40

    Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123, 1475–1489 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Buster, D., McNally, K. & McNally, F. J. Katanin inhibition prevents the redistribution of γ-tubulin at mitosis. J. Cell Sci. 115, 1083–1092 (2002).

    CAS  PubMed  Google Scholar 

  42. 42

    Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Mahoney, N. M., Goshima, G., Douglass, A. D. & Vale, R. D. Making microtubules and mitotic spindles in cells without functional centrosomes. Curr. Biol. 16, 564–569 (2006).

    CAS  Article  Google Scholar 

  45. 45

    Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A. & Kapoor, T. M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Maiato, H., Rieder, C. L. & Khodjakov, A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167, 831–840 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Knop, M. & Schiebel, E. Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16, 6985–6995 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Knop, M. & Schiebel, E. Receptors determine the cellular localization of a γ-tubulin complex and thereby the site of microtubule formation. EMBO J. 17, 3952–3967 (1998).

    CAS  Article  Google Scholar 

  49. 49

    Sawin, K. E., Lourenco, P. C. & Snaith, H. A. Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr. Biol. 14, 763–775 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Venkatram, S. et al. Identification and characterization of two novel proteins affecting fission yeast γ-tubulin complex function. Mol. Biol. Cell 15, 2287–2301 (2004).

    CAS  Article  Google Scholar 

  51. 51

    Samejima, I., Lourenco, P. C., Snaith, H. A. & Sawin, K. E. Fission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p. Mol. Biol. Cell 16, 3040–3051 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Venkatram, S., Jennings, J. L., Link, A. & Gould, K. L. Mto2p, a novel fission yeast protein required for cytoplasmic microtubule organization and anchoring of the cytokinetic actin ring. Mol. Biol. Cell 16, 3052–3063 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Zimmerman, S. & Chang, F. Effects of γ-tubulin complex proteins on microtubule nucleation and catastrophe in fission yeast. Mol. Biol. Cell 16, 2719–2733 (2005).

    CAS  Article  Google Scholar 

  54. 54

    do Carmo Avides, M. & Glover, D. M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283, 1733–1735 (1999).

    CAS  Article  Google Scholar 

  55. 55

    Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H. & Ono, Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245 (2002).

    CAS  Article  Google Scholar 

  56. 56

    Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113–125 (2003).

    CAS  Article  Google Scholar 

  57. 57

    Terada, Y., Uetake, Y. & Kuriyama, R. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol. 162, 757–763 (2003).

    CAS  Article  Google Scholar 

  58. 58

    Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).

    CAS  Article  Google Scholar 

  59. 59

    Anders, A., Lourenco, P. C. & Sawin, K. E. Non-core components of the fission yeast γ-tubulin complex. Mol. Biol. Cell 17, 5075–5093 (2006).

    CAS  Article  Google Scholar 

  60. 60

    Verollet, C. et al. Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation. J. Cell Biol. 172, 517–528 (2006).

    CAS  Article  Google Scholar 

  61. 61

    Vogt, N., Koch, I., Schwarz, H., Schnorrer, F. & Nusslein-Volhard, C. The γTuRC components Grip75 and Grip128 have an essential microtubule-anchoring function in the Drosophila germline. Development 133, 3963–3972 (2006).

    CAS  Article  Google Scholar 

  62. 62

    Vogel, J. et al. Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev. Cell 1, 621–631 (2001).

    CAS  Article  Google Scholar 

  63. 63

    Stumpff, J., Kellogg, D. R., Krohne, K. A. & Su, T. T. Drosophila Wee1 interacts with members of the γTURC and is required for proper mitotic-spindle morphogenesis and positioning. Curr. Biol. 15, 1525–1534 (2005).

    CAS  Article  Google Scholar 

  64. 64

    Starita, L. M. et al. BRCA1-dependent ubiquitination of γ-tubulin regulates centrosome number. Mol. Cell. Biol. 24, 8457–8466 (2004).

    CAS  Article  Google Scholar 

Download references


We thank M.-F. Bryan Tsou for critical reading of the manuscript and E. Vladar for helpful comments.

Author information



Corresponding author

Correspondence to Tim Stearns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Tim Stearns's laboratory

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lüders, J., Stearns, T. Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 8, 161–167 (2007).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing