Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opinion

The chromatoid body: a germ-cell-specific RNA-processing centre

Abstract

The chromatoid body, a unique cloud-like structure of male germ cells, moves dynamically in the cytoplasm of haploid spermatids, but its function has remained elusive for decades. Recent findings indicate that microRNA and RNA-decay pathways converge to the chromatoid body. This highly specialized structure might function as an intracellular focal domain that organizes and controls RNA processing in male germ cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The CB is a dense fibrous structure in the cytoplasm of haploid round spermatids.
Figure 2: Schematic representation of transcriptional activity and appearance of the CB during spermatogenesis.
Figure 3: Model of chromatoid body function in haploid male germ cells.

References

  1. 1

    Eddy, E. M. & O'Brien, D. A. Gene expression during mammalian meiosis. Curr. Top. Dev. Biol. 37, 141–200 (1998).

    CAS  Article  PubMed Central  Google Scholar 

  2. 2

    Sassone-Corsi, P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176–2178 (2002).

    CAS  Article  PubMed Central  Google Scholar 

  3. 3

    Braun, R. E. Post-transcriptional control of gene expression during spermatogenesis. Semin. Cell Dev. Biol. 9, 483–489 (1998).

    CAS  Article  PubMed Central  Google Scholar 

  4. 4

    Kimmins, S. & Sassone-Corsi, P. Chromatin remodeling and epigenetic features of germ cells. Nature 434, 583–589 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  5. 5

    Kleene, K. C. Multiple controls over the efficiency of translation of the mRNAs encoding transition proteins, protamines, and the mitochondrial capsule selenoprotein in late spermatids in mice. Dev. Biol. 159, 720–731 (1993).

    CAS  Article  PubMed Central  Google Scholar 

  6. 6

    Ikenishi, K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev. Growth Differ. 40, 1–10 (1998).

    CAS  Article  PubMed Central  Google Scholar 

  7. 7

    Parvinen, M. The chromatoid body in spermatogenesis. Int. J. Androl. 28, 189–201 (2005).

    Article  PubMed Central  Google Scholar 

  8. 8

    Kotaja, N., Bhattacharyya, S. N., Jaskiewicz, L., Kimmins, S., Parvinen, M., Filipowicz, W. & Sassone-Corsi, P. The chromatoid body of male germ cells: similarity with P-bodies and presence of Dicer and microRNA components. Proc. Natl Acad. Sci. USA 103, 2647–2652 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  9. 9

    Kotaja, N., Lin, H., Parvinen, M. & Sassone-Corsi, P. Interaction of Argonaute/PIWI family member MIWI and microtubule-binding motor protein KIF17b in chromatoid bodies of male germ cells. J. Cell Sci. 119, 2819–2825 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  10. 10

    Benda, C. Neue Mitteilungen über die Entwickelung der Genitaldrüsen und die Metamorphose der Samenzellen (Histogenese der Spermatozoen). Verhandlungen der Berliner Physiologischen Gesellschaft. Arch. Anat. Physiol. 1891, 549–552 (1891).

    Google Scholar 

  11. 11

    Fawcett, D. W., Eddy, E. M. & Phillips, D. M. Observations on the fine structure and relationships of the chromatoid body in mammalian spermatogenesis. Biol. Reprod. 2, 129–153 (1970).

    CAS  Article  PubMed Central  Google Scholar 

  12. 12

    Fujiwara, Y et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl Acad. Sci. USA 91, 12258–12262 (1994).

    CAS  Article  PubMed Central  Google Scholar 

  13. 13

    Raz, E. The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1, 1017 (2000).

    Article  Google Scholar 

  14. 14

    Styhler, S., Nakamura, A., Swan, A., Suter, B. & Lasko, P. vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125, 1569–1578 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Tanaka, S. S. et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14, 841–853 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Soderstrom, K. O. & Parvinen, M. Incorporation of (3H)uridine by the chromatoid body during rat spermatogenesis. J. Cell Biol. 70, 239–246 (1976).

    CAS  Article  PubMed Central  Google Scholar 

  17. 17

    Walt, H. & Armbruster, B. L. Actin and RNA are components of the chromatoid bodies in spermatids of the rat. Cell Tissue Res. 236, 487–490 (1984).

    CAS  Article  PubMed Central  Google Scholar 

  18. 18

    Saunders, P. T., Millar, M. R., Maguire, S. M. & Sharpe, R. M. Stage-specific expression of rat transition protein 2 mRNA and possible localization to the chromatoid body of step 7 spermatids by in situ hybridization using a nonradioactive riboprobe. Mol. Reprod. Dev. 33, 385–391 (1992).

    CAS  Article  PubMed Central  Google Scholar 

  19. 19

    Figueroa, J. & Burzio, L. O. Polysome-like structures in the chromatoid body of rat spermatids. Cell Tissue Res. 291, 575–579 (1998).

    CAS  Article  PubMed Central  Google Scholar 

  20. 20

    Filipowicz, W., Jaskiewicz, L., Kolb, F. A. & Pillai, R. S. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15, 331–341 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  21. 21

    Zamore, P. D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science 309, 1519–1524 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Bernstein, E. & Allis, C. D. RNA meets chromatin. Genes Dev. 19, 1635–1655 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  23. 23

    Sontheimer, E. J. Assembly and function of RNA silencing complexes. Nature Rev. Mol. Cell Biol. 6, 127–138 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Barad, O. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  25. 25

    Yu, Z., Raabe, T. & Hecht, N. B. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol. Reprod. 73, 427–433 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  26. 26

    Sassone-Corsi, P. Transcriptional checkpoints determining the fate of male germ cells. Cell 88, 163–166 (1997).

    CAS  Article  PubMed Central  Google Scholar 

  27. 27

    Findley, S. D., Tamanaha, M., Clegg, N. J. & Ruohola-Baker, H. Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130, 859–871 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839–849 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  29. 29

    Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Jankowsky, E. & Bowers, H. Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res. 12, 903–912 (2006).

    Google Scholar 

  31. 31

    Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Sasaki, T., Shiohama, A., Minoshima, S. & Shimizu, N. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 82, 323–330 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  33. 33

    Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G. & Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002).

    CAS  Article  PubMed Central  Google Scholar 

  36. 36

    Girard, A., Sachidanandam, R., Hannon, G. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    Article  PubMed Central  Google Scholar 

  37. 37

    Aravin, A. et al. A novel class of small RNAs bind to MIL1 protein in mouse testes. Nature 442, 203–207 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  38. 38

    Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  39. 39

    Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  40. 40

    Grivna, S. T., Pyhtila, B. & Lin, H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc. Natl Acad. Sci. USA 103, 13415–13420 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  41. 41

    Parvinen, M. & Parvinen, L. M. Active movements of the chromatoid body. A possible transport mechanism for haploid gene products. J. Cell Biol. 80, 621–628 (1979).

    CAS  Article  PubMed Central  Google Scholar 

  42. 42

    Ventela, S., Toppari, J. & Parvinen, M. Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol. Biol. Cell 14, 2768–2780 (2003).

    Article  PubMed Central  Google Scholar 

  43. 43

    Macho, B., Brancorsini, S., Fimia, G. M., Setou, M., Hirokawa, N. & Sassone-Corsi, P. CREM-dependent transcription in male germ cells controlled by a kinesin. Science 298, 2388–2390 (2002).

    CAS  Article  PubMed Central  Google Scholar 

  44. 44

    Kotaja, N., Macho, B. & Sassone-Corsi, P. Microtubule-independent and protein kinase A-mediated function of kinesin KIF17b controls the intracellular transport of activator of CREM in testis (ACT). J. Biol. Chem. 280, 31739–31745 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  45. 45

    Chennathukuzhi, V., Morales, C. R., El-Alfy, M. & Hecht, N. B. The kinesin KIF17b and RNA-binding protein TB-RBP transport specific cAMP-responsive element modulator-regulated mRNAs in male germ cells. Proc. Natl Acad. Sci. USA 100, 15566–15571 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  46. 46

    Nantel, F. et al. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159–162 (1996).

    CAS  Article  PubMed Central  Google Scholar 

  47. 47

    Blendy, J. A., Kaestner, K. H., Weinbauer, G. F., Nieschlag, E. & Schutz, G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162–165 (1996).

    CAS  Article  PubMed Central  Google Scholar 

  48. 48

    Cougot, N., Babajko, S. & Seraphin, B. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell. Biol. 165, 31–40 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  49. 49

    Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  50. 50

    Brengues, M., Teixeira, D. & Parker, R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486–489 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  51. 51

    Andrei, M. A., Ingelfinger, D., Heintzmann, R., Achsel, T., Rivera-Pomar, R. & Luhrmann, R. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11, 717–727 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  52. 52

    Sen, G. L. & Blau, H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biol. 7, 633–636 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol. 7, 719–723 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  54. 54

    Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005).

    CAS  Article  Google Scholar 

  55. 55

    Liu, J., Rivas, F. V., Wohlschlegel, J., Yates, J. R. 3rd, Parker, R. & Hannon, G. J. A role for the P-body component GW182 in microRNA function. Nature Cell Biol. 7, 1161–1166 (2005).

    CAS  Article  Google Scholar 

  56. 56

    Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M. & Parker, R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371–382 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  57. 57

    Coller, J. & Parker, R. General translational repression by activators of mRNA decapping. Cell 122, 875–886 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  58. 58

    Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  59. 59

    Rossi, J. J. RNAi and the P-body connection. Nature Cell Biol. 7, 643–644 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  60. 60

    Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    CAS  Article  Google Scholar 

  61. 61

    Kotaja, N. et al. Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nature Methods 1, 249–254 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  62. 62

    Toyooka, Y., Tsunekawa, N., Takahashi, Y., Matsui, Y., Satoh, M. & Noce, T. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93, 139–149 (2000).

    CAS  Article  Google Scholar 

  63. 63

    Tsai-Morris, C. H., Sheng, Y., Lee, E., Lei, K. J. & Dufau, M. L. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. Proc. Natl Acad. Sci. USA 101, 6373–6378 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  64. 64

    Oko, R., Korley, R., Murray, M. T., Hecht, N. B. & Hermo, L. Germ cell-specific DNA and RNA binding proteins p48/52 are expressed at specific stages of male germ cell development and are present in the chromatoid body. Mol. Reprod. Dev. 44, 1–13 (1996).

    CAS  Article  PubMed Central  Google Scholar 

  65. 65

    Shibata, N., Tsunekawa, N., Okamoto-Ito, S., Akasu, R., Tokumasu, A. & Noce, T. Mouse RanBPM is a partner gene to a germline specific RNA helicase, mouse vasa homolog protein. Mol. Reprod. Dev. 67, 1–7 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  66. 66

    Chuma, S., Hiyoshi, M., Yamamoto, A., Hosokawa, M., Takamune, K. & Nakatsuji, N. Mouse Tudor repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech. Dev. 120, 979–990 (2003).

    CAS  Article  PubMed Central  Google Scholar 

  67. 67

    Biggiogera, M., Fakan, S., Leser, G., Martin, T. E. & Gordon, J. Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol. Reprod. Dev. 26, 150–158 (1990).

    CAS  Article  PubMed Central  Google Scholar 

  68. 68

    Moussa, F., Oko, R. & Hermo, L. The immunolocalization of small nuclear ribonucleoprotein particles in testicular cells during the cycle of the seminiferous epithelium of the adult rat. Cell Tissue Res. 278, 363–378 (1994).

    CAS  Article  PubMed Central  Google Scholar 

  69. 69

    Walt, H. & Armbruster, B. L. Actin and RNA are components of the chromatoid bodies in spermatids of the rat. Cell Tissue Res. 236, 487–490 (1984).

    CAS  Article  PubMed Central  Google Scholar 

  70. 70

    Werner, G. & Werner, K. Immunocytochemical localization of histone H4 in the chromatoid body of rat spermatids. J. Submicrosc. Cytol. Pathol. 27, 325–330 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Hess, R. A., Miller, L. A., Kirby, J. D., Margoliash, E. & Goldberg, E. Immunoelectron microscopic localization of testicular and somatic cytochromes c in the seminiferous epithelium of the rat. Biol. Reprod. 48, 1299–1308 (1993).

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to M. Parvinen for discussions and insights on the chromatoid body. We also thank W. Filipowicz, J. Toppari, D. Mishra Prasad and all the members of the Sassone-Corsi laboratory for help and discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo Sassone-Corsi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

Active and non-random movements of the chromatoid body.The chromatoid body (CB) moves both along, and perpendicularly against the nuclear envelope, and makes frequent contacts with the envelope. A stage-specific piece of rat seminiferous tubule was squashed on the glass slide1, and living-cell phase-contrast microscopy was performed to follow the movements of the CB. The video is provided by M. Parvinen, University of Turku, Finland. (MPG 5542 kb)

Reference

1. Kotaja, N. et al. Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nature Methods 1, 249?254 (2004).

Related links

Related links

FURTHER INFORMATION

Paolo Sassone-Corsi's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kotaja, N., Sassone-Corsi, P. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8, 85–90 (2007). https://doi.org/10.1038/nrm2081

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing