Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing actin dynamics for clathrin-mediated endocytosis

Key Points

  • Several lines of evidence have implicated the actin cytoskeleton in the internalization step of clathrin-mediated endocytosis in various organisms from yeast to mammals.

  • Live-cell imaging studies have recently revealed a regular sequence of protein assembly events at endocytic sites. Actin and actin-cytoskeleton proteins are recruited to endocytic sites transiently during the budding of clathrin-coated endocytic vesicles.

  • Functional assays indicate that actin might be required for steps such as the invagination of the plasma membrane, the constriction of the vesicle neck and the scission of the endocytic vesicle.

  • Actin polymerization might provide the force for endocytic internalization. Proteins that link the growing actin-filament network to the endocytic coat might be used to harness the force of actin polymerization for vesicle budding.

  • The actin-related protein-2/3 (Arp2/3) complex nucleates actin-filament polymerization at endocytic sites and is a key target of many regulatory proteins. In Saccharomyces cerevisiae, in which the most extensive functional studies have been carried out so far, the activity of the Arp2/3 complex at endocytic sites seems to be tightly controlled by both positive and negative regulators.

  • Actin machinery that is similar to that used at endocytic sites is also used for the protrusion of lamellipodia. The same molecular machinery has therefore been adapted for different uses over the course of evolution.

Abstract

Actin polymerization often occurs at the plasma membrane to drive the protrusion of lamellipodia and filopodia at the leading edge of migrating cells. A role for actin polymerization in another cellular process that involves the reshaping of the plasma membrane — namely endocytosis — has recently been established. Live-cell imaging studies are shedding light on the order and timing of the molecular events and mechanisms of actin function during endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin-polymerization-driven processes in eukaryotic cells.
Figure 2: The sequential assembly of proteins at endocytic sites.
Figure 3: Modelling actin-driven endocytic internalization.
Figure 4: Current model for actin-driven endocytic internalization.

Similar content being viewed by others

References

  1. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Engqvist-Goldstein, A. E. & Drubin, D. G. Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19, 287–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Merrifield, C. J. Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol. 14, 352–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Perrais, D. & Merrifield, C. J. Dynamics of endocytic vesicle creation. Dev. Cell 9, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Qualmann, B., Kessels, M. M. & Kelly, R. B. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150, F111–F116 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Higgins, M. K. & McMahon, H. T. Snap-shots of clathrin-mediated endocytosis. Trends Biochem. Sci. 27, 257–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 20, 313–332 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002). The first description of transient actin polymerization bursts at clathrin-coated pits in living cells.

    Article  CAS  PubMed  Google Scholar 

  10. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gottlieb, T. A., Ivanov, I. E., Adesnik, M. & Sabatini, D. D. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120, 695–710 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Lamaze, C., Fujimoto, L. M., Yin, H. L. & Schmid, S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272, 20332–20335 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Salisbury, J. L., Condeelis, J. S. & Satir, P. Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J. Cell Biol. 87, 132–141 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Ayscough, K. R. Endocytosis and the development of cell polarity in yeast require a dynamic F-actin cytoskeleton. Curr. Biol. 10, 1587–1590 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855–2862 (1993). Provided the first evidence that actin is required for endocytic internalization in S. cerevisiae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geli, M. I. & Riezman, H. Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272, 533–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA 99, 14476–14481 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Mulholland, J., Konopka, J., Singer-Kruger, B., Zerial, M. & Botstein, D. Visualization of receptor-mediated endocytosis in yeast. Mol. Biol. Cell 10, 799–817 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeng, R. L. & Welch, M. D. Cytoskeleton: actin and endocytosis — no longer the weakest link. Curr. Biol. 11, R691–R694 (2001).

  22. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Jonsdottir, G. A. & Li, R. Dynamics of yeast myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol. 14, 1604–1609 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003). This paper showed that S. cerevisiae actin patches transiently colocalize with endocytic protein complexes and that actin polymerization is required for their internalization.

    Article  CAS  PubMed  Google Scholar 

  25. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005). This study revealed functions for 15 proteins during endocytic internalization in S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  26. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005). Describes a new method for visualizing vesicle scission in living cells and shows that scission is tightly coupled to actin-filament assembly.

    Article  CAS  PubMed  Google Scholar 

  27. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Newpher, T. M., Smith, R. P., Lemmon, V. & Lemmon, S. K. In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev. Cell 9, 87–98 (2005). This paper provided the first direct visualization of clathrin at endocytic sites in S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  29. Rappoport, J. Z., Taha, B. W., Lemeer, S., Benmerah, A. & Simon, S. M. The AP-2 complex is excluded from the dynamic population of plasma membrane-associated clathrin. J. Biol. Chem. 278, 47357–47360 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Sirotkin, V., Beltzner, C. C., Marchand, J. B. & Pollard, T. D. Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J. Cell Biol. 170, 637–648 (2005). An important study of regulators of actin polymerization at endocytic sites in S. pombe.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soulet, F., Yarar, D., Leonard, M. & Schmid, S. L. SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol. Biol. Cell 16, 2058–2067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005). This work showed a functional requirement for dynamic actin at endocytic sites in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. J. Cell. Sci. 113, 571–585 (2000).

    CAS  PubMed  Google Scholar 

  34. Doyle, T. & Botstein, D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl Acad. Sci. USA 93, 3886–3891 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waddle, J. A., Karpova, T. S., Waterston, R. H. & Cooper, J. A. Movement of cortical actin patches in yeast. J. Cell Biol. 132, 861–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Carlsson, A. E., Shah, A. D., Elking, D., Karpova, T. S. & Cooper, J. A. Quantitative analysis of actin patch movement in yeast. Biophys. J. 82, 2333–2343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huckaba, T. M., Gay, A. C., Pantalena, L. F., Yang, H. C. & Pon, L. A. Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 167, 519–530 (2004). The visualization of endocytic vesicles in actin patches and their movement along actin cables using a lipid dye in S. cerevisiae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pelham, R. J. Jr & Chang, F. Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe. Nature Cell Biol. 3, 235–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Smith, M. G., Swamy, S. R. & Pon, L. A. The life cycle of actin patches in mating yeast. J. Cell. Sci. 114, 1505–1513 (2001).

    CAS  PubMed  Google Scholar 

  40. Sekiya-Kawasaki, M. et al. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J. Cell Biol. 162, 765–772 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).

    Article  CAS  Google Scholar 

  42. Song, B. D. & Schmid, S. L. A molecular motor or a regulator? Dynamin's in a class of its own. Biochemistry 42, 1369–1376 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Gammie, A. E., Kurihara, L. J., Vallee, R. B. & Rose, M. D. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast. J. Cell Biol. 130, 553–566 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Nothwehr, S. F., Conibear, E. & Stevens, T. H. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol. 129, 35–46 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Kaksonen, M., Peng, H. B. & Rauvala, H. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. J. Cell Sci. 113, 4421–4426 (2000).

    CAS  PubMed  Google Scholar 

  46. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA 99, 167–172 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rozelle, A. L. et al. Phosphatidylinositol 4, 5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Chang, F. S., Stefan, C. J. & Blumer, K. J. A WASp homolog powers actin polymerization-dependent motility of endosomes in vivo. Curr. Biol. 13, 455–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 260–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Toshima, J. Y. et al. Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent α-factor derivatives. Proc. Natl Acad. Sci. USA 103, 5793–5798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bennett, E. M., Chen, C. Y., Engqvist-Goldstein, A. E., Drubin, D. G. & Brodsky, F. M. Clathrin hub expression dissociates the actin-binding protein Hip1R from coated pits and disrupts their alignment with the actin cytoskeleton. Traffic 2, 851–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 (1999). The first study to observe endocytic clathrin dynamics in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  55. Martin, A. C. et al. Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function. J. Cell Biol. 168, 315–328 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai, J. & Sheetz, M. P. Membrane tether formation from blebbing cells. Biophys. J. 77, 3363–3370 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Gouin, E., Welch, M. D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Peskin, C. S., Odell, G. M. & Oster, G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65, 316–324 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moreau, V. & Way, M. Cdc42 is required for membrane dependent actin polymerization in vitro. FEBS Lett. 427, 353–356 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Giardini, P. A., Fletcher, D. A. & Theriot, J. A. Compression forces generated by actin comet tails on lipid vesicles. Proc. Natl Acad. Sci. USA 100, 6493–6498 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Upadhyaya, A., Chabot, J. R., Andreeva, A., Samadani, A. & van Oudenaarden, A. Probing polymerization forces by using actin-propelled lipid vesicles. Proc. Natl Acad. Sci. USA 100, 4521–4526 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Rodal, A. A., Kozubowski, L., Goode, B. L., Drubin, D. G. & Hartwig, J. H. Actin and septin ultrastructures at the budding yeast cell cortex. Mol. Biol. Cell 16, 372–384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Engqvist-Goldstein, A. E., Kessels, M. M., Chopra, V. S., Hayden, M. R. & Drubin, D. G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol. 147, 1503–1518 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Engqvist-Goldstein, A. E. et al. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol. 154, 1209–1223 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Henry, K. R. et al. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of Sla2p in yeast. Mol. Biol. Cell 13, 2607–2625 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toshima, J., Toshima, J. Y., Martin, A. C. & Drubin, D. G. Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nature Cell Biol. 7, 246–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Evangelista, M. et al. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J. Cell Biol. 148, 353–362 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lechler, T., Shevchenko, A. & Li, R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J. Cell Biol. 148, 363–373 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Welch, M. D. & Mullins, R. D. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Cao, H. et al. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell Biol. 23, 2162–2170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Benesch, S. et al. N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J. Cell Sci. 118, 3103–3115 (2005). Showed a functional requirement for N-WASP in endocytic internalization in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  77. Innocenti, M. et al. Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biol. 7, 969–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. & Munn, A. L. The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr. Biol. 8, 959–962 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Wendland, B., McCaffery, J. M., Xiao, Q. & Emr, S. D. A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J. Cell Biol. 135, 1485–1500 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. D'Agostino, J. L. & Goode, B. L. Dissection of Arp2/3 complex actin nucleation mechanism and distinct roles for its nucleation-promoting factors in Saccharomyces cerevisiae. Genetics 171, 35–47 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hussain, N. K. et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nature Cell Biol. 3, 927–932 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Kessels, M. M. & Qualmann, B. Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J. 21, 6083–6094 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McGavin, M. K. et al. The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)-mediated actin polymerization to T cell antigen receptor endocytosis. J. Exp. Med. 194, 1777–1787 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rodal, A. A., Manning, A. L., Goode, B. L. & Drubin, D. G. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr. Biol. 13, 1000–1008 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Anderson, B. L. et al. The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J. Cell Biol. 141, 1357–1370 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tang, H. Y., Xu, J. & Cai, M. Pan1p, End3p, and S1a1p, three yeast proteins required for normal cortical actin cytoskeleton organization, associate with each other and play essential roles in cell wall morphogenesis. Mol. Cell. Biol. 20, 12–25 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cope, M. J., Yang, S., Shang, C. & Drubin, D. G. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J. Cell Biol. 144, 1203–1218 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeng, G., Yu, X. & Cai, M. Regulation of yeast actin cytoskeleton-regulatory complex Pan1p–Sla1p–End3p by serine/threonine kinase Prk1p. Mol. Biol. Cell 12, 3759–3772 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stefan, C. J., Padilla, S. M., Audhya, A. & Emr, S. D. The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol. Cell. Biol. 25, 2910–2923 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McNiven, M. A. et al. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell Biol. 151, 187–198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott–Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamabhai, M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 273, 31401–31407 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Tsujita, K. et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol. 172, 269–279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).

    CAS  PubMed  Google Scholar 

  96. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Hahne, P., Sechi, A., Benesch, S. & Small, J. V. Scar/WAVE is localised at the tips of protruding lamellipodia in living cells. FEBS Lett. 492, 215–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Nakagawa, H. et al. N-WASP, WAVE and Mena play different roles in the organization of actin cytoskeleton in lamellipodia. J. Cell Sci. 114, 1555–1565 (2001).

    CAS  PubMed  Google Scholar 

  100. Wu, H. & Parsons, J. T. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120, 1417–1426 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Lappalainen, P. & Drubin, D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Mogilner, A. & Oster, G. Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mogilner, A. & Oster, G. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84, 1591–1605 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Sun and V. Okreglak for critically reading the manuscript. Work in the laboratory of D.G.D. is supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Drubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David Drubin's homepage

Glossary

Lamellipodia

Sheet-like plasma-membrane protrusions at the leading edge of motile cells that are formed by actin polymerization.

Filopodia

Plasma-membrane spikes that are formed by actin polymerization.

Phagocytosis

A plasma-membrane-associated process in which a eukaryotic cell engulfs large particles, such as bacteria.

Macropinocytosis

A form of endocytosis in which extracellular fluid is taken up through the formation of large membrane vesicles.

Clathrin-mediated endocytosis

The uptake of receptors, membrane and cargo at the cell surface through a process that specifically involves the coat protein clathrin.

Caveolae-mediated endocytosis

A form of uptake at the plasma membrane that involves the protein caveolin.

Cofilin

A conserved actin-binding protein that is thought to be involved in actin-filament severing and disassembly.

Lucifer yellow

A fluorescent dye that enters cells by endocytosis and is often used as a marker for bulk endocytic uptake.

Arp2/3 complex

A protein complex that promotes the nucleation of actin filaments and creates a branched actin meshwork.

Formin-family proteins

A family of proteins that contain a formin homology-2 domain and can promote actin-filament assembly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaksonen, M., Toret, C. & Drubin, D. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7, 404–414 (2006). https://doi.org/10.1038/nrm1940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing