Opinion | Published:

Chromatin in pluripotent embryonic stem cells and differentiation

Nature Reviews Molecular Cell Biology volume 7, pages 540546 (2006) | Download Citation

Subjects

Abstract

Embryonic stem (ES) cells are unique in that they are pluripotent and have the ability to self-renew. The molecular mechanisms that underlie these two fundamental properties are largely unknown. We discuss how unique properties of chromatin in ES cells contribute to the maintenance of pluripotency and the determination of differentiation properties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    Self-renewal vs. differentiation of mouse embryonic stem cells. Biol. Reprod. 71, 1755–1765 (2004).

  2. 2.

    The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells 6, 386–391 (2004).

  3. 3.

    , , & Nuclear compartmentalization and gene activity. Nature Rev. Mol. Cell Biol. 1, 137–143 (2000).

  4. 4.

    & Structure and function in the nucleus. Science 280, 547–553 (1998).

  5. 5.

    & Chromosome positioning in the interphase nucleus. Trends Cell Biol. 12, 425–432 (2002).

  6. 6.

    et al. Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum. Genet. 62, 201–209 (1982).

  7. 7.

    , & Tissue-specific spatial organization of genomes. Genome Biol. 5, R44 (2004).

  8. 8.

    et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).

  9. 9.

    Spatial positioning: a new dimension in genome function. Cell 119, 153–156 (2004).

  10. 10.

    , , , & Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177–185 (2005).

  11. 11.

    , , , & Ultrastructure of human embryonic stem cells and spontaneous and retinoic acid-induced differentiating cells. Ultrastruct. Pathol. 28, 229–238 (2004).

  12. 12.

    et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

  13. 13.

    , , & Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J. Cell Sci. 118, 3861–3868 (2005).

  14. 14.

    Gene expression and nuclear architecture during development and differentiation. Mech. Dev. 120, 1217–1230 (2003).

  15. 15.

    , , & The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305–345 (2004).

  16. 16.

    et al. Spatial genome organization during T-cell differentiation. Cytogenet. Genome Res. 105, 292–301 (2004).

  17. 17.

    et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl Acad. Sci. USA 100, 13350–13355 (2003).

  18. 18.

    & Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

  19. 19.

    , , , & Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet. 6, 669–677 (2005).

  20. 20.

    & Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J. Cell Biochem. 95, 74–82 (2005).

  21. 21.

    et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3, 1645–1650 (2004).

  22. 22.

    et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci. 119, 132–140 (2006).

  23. 23.

    et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).

  24. 24.

    & Whole-genome views of chromatin structure. Chromosome Res. 13, 289–298 (2005).

  25. 25.

    & Epigenetic aspects of differentiation. J. Cell Sci. 117, 4355–4363 (2004).

  26. 26.

    et al. Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 115, 3439–3448 (2002).

  27. 27.

    et al. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor. Biochem. Biophys. Res. Commun. 335, 667–675 (2005).

  28. 28.

    et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

  29. 29.

    et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

  30. 30.

    et al. The high-mobility-group box protein SSRP1/T160 is essential for cell viability in day 3.5 mouse embryos. Mol. Cell Biol. 23, 5301–5307 (2003).

  31. 31.

    & The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl Acad. Sci. USA 100, 14097–14102 (2003).

  32. 32.

    & Stem cell self-renewal controlled by chromatin remodeling factors. Science 310, 1487–1489 (2005).

  33. 33.

    et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biol. 8, 285–292 (2006).

  34. 34.

    & Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

  35. 35.

    et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell Biol. 24, 6393–6402 (2004).

  36. 36.

    , & Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

  37. 37.

    Dynamics of DNA methylation pattern. Curr. Opin. Genet. Dev. 10, 224–228 (2000).

  38. 38.

    , & Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38, 32–38 (2004).

  39. 39.

    , , , & X-inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol. 180, 618–630 (1996).

  40. 40.

    et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

  41. 41.

    , , & Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol. Cell Biol. 24, 5710–5720 (2004).

  42. 42.

    et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell Biol. 25, 1804–1820 (2005).

  43. 43.

    & The epigenetic basis for embryonic stem cell pluripotency. Bioessays 27, 1286–1293 (2005).

  44. 44.

    & Silence of the genes — mechanisms of long-term repression. Nature Rev. Genet. 6, 648–654 (2005).

  45. 45.

    , , & Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Struct. Mol. Biol. 11, 1068–1075 (2004).

  46. 46.

    , , , & The role of DNA methylation in setting up chromatin structure during development. Nature Genet. 34, 187–192 (2003).

  47. 47.

    & Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood 84, 408–414 (1994).

  48. 48.

    et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7, 961–969 (2002).

  49. 49.

    et al. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Biochem. Biophys. Res. Commun. 323, 86–90 (2004).

  50. 50.

    & Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17, 771–779 (1979).

  51. 51.

    et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279, 17063–17069 (2004).

  52. 52.

    et al. A bivalent chromatin structure marks key developmental regulators by polycomb in human embryonic stem cells. Cell 125, 315–326 (2006).

  53. 53.

    & Neural induction, the default model and embryonic stem cells. Nature Rev. Neurosci. 3, 271–280 (2002).

  54. 54.

    et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13, 601–608 (2004).

  55. 55.

    , & The molecular repertoire of the 'almighty' stem cell. Nature Rev. Mol. Cell Biol. 6, 726–737 (2005).

  56. 56.

    et al. Design principle of gene expression used by human stem cells: implication for pluripotency. FASEB J. 19, 147–149 (2005).

  57. 57.

    et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

  58. 58.

    et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

  59. 59.

    et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

  60. 60.

    et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

  61. 61.

    et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

  62. 62.

    et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

  63. 63.

    et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–2113 (1998).

  64. 64.

    et al. Genomic alterations in cultured human embryonic stem cells. Nature Genet. 37, 1099–1103 (2005).

  65. 65.

    , , , & Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

  66. 66.

    et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 19 Apr 2006 (doi:10.1038/nature04733).

  67. 67.

    et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

Download references

Acknowledgements

We thank M. Bustin, N. Dillon, P. Scaffidi and T. Takizawa for constructive comments. T.M. is a Fellow of the Keith R. Porter Endowment for Cell Biology.

Author information

Affiliations

  1. Eran Meshorer and Tom Misteli are at the National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.  meshoree@mail.nih.gov;  mistelit@mail.nih.gov

    • Eran Meshorer
    •  & Tom Misteli

Authors

  1. Search for Eran Meshorer in:

  2. Search for Tom Misteli in:

Competing interests

The authors declare no competing financial interests.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrm1938