Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sperm guidance in mammals — an unpaved road to the egg

Key Points

  • Mammalian spermatozoa employ at least two guidance mechanisms: chemotaxis and thermotaxis. These mechanisms are restricted to capacitated spermatozoa only, constituting 10% of the sperm population in humans.

  • The capacitated, chemotactic, thermotactic state is temporary and its timing in different mammalian species seems to be programmed according to the time at which an ovulated egg is available in the female genital tract.

  • Sperm chemoattractants are secreted from both the egg and its surrounding cumulus cells. One chemoattractant that is secreted from the cumulus cells is progesterone, which is active in the pM concentration range.

  • One of the chemotaxis receptors on human spermatozoa is an olfactory receptor, OR17-4. Its agonist, the floral scent bourgeonal, acts as a sperm chemoattractant in vitro.

  • Progesterone and bourgeonal each cause a transient rise in intracellular Ca2+ concentrations, which results in a behavioural response. The signalling cascade that mediates these responses is not known for either of these chemoattractants.

  • At ovulation, the temperature at the sperm's storage site decreases by almost 1°C in rabbits, resulting in an ovulation-dependent temperature gradient that can be exploited for sperm thermotaxis from the storage to the fertilization site.

  • Sperm guidance to the egg in the mammalian female genital tract seems to be a multistep process, involving long-range thermotaxis and at least two, possibly more, steps of chemotaxis.

Abstract

Contrary to the prevalent view, there seems to be no competition in the mammalian female genital tract among large numbers of sperm cells that are racing towards the egg. Instead, small numbers of the ejaculated sperm cells enter the Fallopian tube, and these few must be guided to make the remaining long, obstructed way to the egg. Here, we review the mechanisms by which mammalian sperm cells are guided to the egg.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian female genital tract and possible guidance mechanisms.
Figure 2: Two types of sperm response to chemoattractants.
Figure 3: Models for the molecular mechanisms of sperm chemotaxis in marine species and mammals.

Similar content being viewed by others

References

  1. Harper, M. J. K. in Germ Cells and Fertilization, Vol. 1 (eds Austin, C. R. & Short, R. V.) 102–127 (Cambridge Univ. Press, Cambridge, England, 1982).

    Google Scholar 

  2. Williams, M. et al. Sperm numbers and distribution within the human Fallopian tube around ovulation. Hum. Reprod. 8, 2019–2026 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Eisenbach, M. & Tur-Kaspa, I. Do human eggs attract spermatozoa? BioEssays 21, 203–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Jaiswal, B. S. & Eisenbach, M. in Fertilization (ed. Hardy, D. M.) 57–117 (Academic Press, San Diego, 2002).

    Book  Google Scholar 

  5. Cohen-Dayag, A., Tur-Kaspa, I., Dor, J., Mashiach, S. & Eisenbach, M. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. Proc. Natl Acad. Sci. USA 92, 11039–11043 (1995). This paper, together with reference 12, demonstrates for the first time that only capacitated spermatozoa are chemotactic. These reports further show that the capacitated, chemotactic state is transient and that different spermatozoa become capacitated/chemotactic at different time points, resulting in the continuous replacement of capacitated, chemotactic cells in a sperm population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giojalas, L. C., Rovasio, R. A., Fabro, G., Gakamsky, A. & Eisenbach, M. Timing of sperm capacitation appears to be programmed according to egg availability in the female genital tract. Fertil. Steril. 82, 247–249 (2004). First report to provide evidence that mammalian spermatozoa become capacitated and chemotactic when, and for as long as, they have a chance to find a fertilizable egg in the oviduct.

    Article  PubMed  Google Scholar 

  7. Eisenbach, M. Chemotaxis (Imperial College Press, London, 2004).

    Book  Google Scholar 

  8. Bahat, A. et al. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nature Med. 9, 149–150 (2003). First demonstration that spermatozoa are guided by thermotaxis.

    Article  CAS  PubMed  Google Scholar 

  9. Miller, R. L. in Biology of Fertilization, Vol. 2 (eds Metz, C. B. & Monroy, A.) 275–337 (Academic Press, New York, 1985).

    Book  Google Scholar 

  10. Cosson, M. P. in Controls of Sperm Motility: Biological and Clinical Aspects (ed. Gagnon, C.) 103–135 (CRC Press, Boca Raton, Florida, 1990).

    Google Scholar 

  11. Eisenbach, M. Sperm chemotaxis. Rev. Reprod. 4, 56–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Cohen-Dayag, A. et al. Sequential acquisition of chemotactic responsiveness by human spermatozoa. Biol. Reprod. 50, 786–790 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Fabro, G. et al. Chemotaxis of capacitated rabbit spermatozoa to follicular fluid revealed by a novel directionality-based assay. Biol. Reprod. 67, 1565–1571 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Oliveira, R. G., Tomasi, L., Rovasio, R. A. & Giojalas, L. C. Increased velocity and induction of chemotactic response in mouse spermatozoa by follicular and oviductal fluids. J. Reprod. Fertil. 115, 23–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Villanueva-Díaz, C., Vadillo-Ortega, F., Kably-Ambe, A., Diaz-Perez, M. A. & Krivitzky, S. K. Evidence that human follicular fluid contains a chemoattractant for spermatozoa. Fertil. Steril. 54, 1180–1182 (1990).

    Article  PubMed  Google Scholar 

  16. Ralt, D. et al. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc. Natl Acad. Sci. USA 88, 2840–2844 (1991). Demonstrates, for the first time, a remarkable correlation between human sperm accumulation in follicular fluid and egg fertilization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ralt, D. et al. Chemotaxis and chemokinesis of human spermatozoa to follicular factors. Biol. Reprod. 50, 774–785 (1994). An in-depth investigation of the cause of sperm accumulation in follicular fluid, and the first report that mammalian spermatozoa respond by chemotaxis to follicular fluid.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Anzi, B. & Chandler, D. E. A sperm chemoattractant is released from Xenopus egg jelly during spawning. Dev. Biol. 198, 366–375 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Giojalas, L. C. & Rovasio, R. A. Mouse spermatozoa modify their dynamic parameters and chemotactic response to factors from the oocyte microenvironment. Int. J. Androl. 21, 201–206 (1998).

    CAS  PubMed  Google Scholar 

  20. Navarro, M. C., Valencia, J., Vazquez, C., Cozar, E. & Villanueva, C. Crude mare follicular fluid exerts chemotactic effects on stallion spermatozoa. Reprod. Domest. Anim. 33, 321–324 (1998).

    Article  Google Scholar 

  21. Serrano, H., Canchola, E. & García-Suárez, M. D. Sperm-attracting activity in follicular fluid associated to an 8.6-kDa protein. Biochem. Biophys. Res. Commun. 283, 782–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wildt, L., Kissler, S., Licht, P. & Becker, W. Sperm transport in the human female genital tract and its modulation by oxytocin as assessed by hysterosalpingoscintigraphy, hysterotonography, electrohysterography and Doppler sonography. Hum. Reprod. Update 4, 655–666 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Tur-Kaspa, I. in Tubal Catheterization (ed. Gleicher, N.) 5–14 (Wiley-Liss, New York, 1992).

    Google Scholar 

  24. Bahat, A., Eisenbach, M. & Tur-Kaspa, I. Periovulatory increase in temperature difference within the rabbit oviduct. Hum. Reprod. 20, 2118–2121 (2005).

    Article  PubMed  Google Scholar 

  25. Flechon, J.-E. & Hunter, R. H. F. Distribution of spermatozoa in the utero-tubal junction and isthmus of pigs, and their relationship with the luminal epithelium after mating: a scanning electron microscope study. Tissue Cell 13, 127–139 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, F. et al. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum. Reprod. 20, 761–767 (2005). First indication that a mature egg and its surrounding cumulus layer each secrete sperm chemoattractants.

    Article  CAS  PubMed  Google Scholar 

  27. Battalia, D. E. & Yanagimachi, R. Enhanced and co-ordinated movement of the hamster oviduct during the periovulatory period. J. Reprod. Fert. 56, 515–520 (1979).

    Article  CAS  Google Scholar 

  28. David, A., Vilensky, A. & Nathan, H. Temperature changes in the different parts of the rabbit's oviduct. Int. J. Gynaec. Obstet. 10, 52–56 (1972).

    Article  Google Scholar 

  29. Hunter, R. H. F. & Nichol, R. A preovulatory temperature gradient between the isthmus and the ampulla of pig oviducts during the phase of sperm storage. J. Reprod. Fert. 77, 599–606 (1986).

    Article  CAS  Google Scholar 

  30. Bedford, J. M. in Germ Cells and Fertilization, Vol. 1 (eds Austin, C. R. & Short, R. V.) 128–163 (Cambridge University Press, Cambridge, England, 1982).

    Google Scholar 

  31. Bedford, J. M. & Kim, H. H. Cumulus oophorus as a sperm sequestering device, in vivo. J. Exp. Zool. 265, 321–328 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Gomendio, M., Harcourt, A. H. & Roldán, E. R. S. in Sperm Competition and Sexual Selection (eds Birkhead, T. R. & Moller, A. P.) 667–751 (Academic Press, London, 1998).

    Book  Google Scholar 

  33. Sun, F. et al. Lack of species-specificity in mammalian sperm chemotaxis. Dev. Biol. 255, 423–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Eisenbach, M. Mammalian sperm chemotaxis and its association with capacitation. Dev. Genet. 25, 87–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Spehr, M. et al. Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis. J. Biol. Chem. 279, 40194–40203 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003). The first identification of a specific chemotaxis receptor, an olfactory receptor, on mammalian spermatozoa.

    Article  CAS  PubMed  Google Scholar 

  37. Gould, J. E., Overstreet, J. W. & Hanson, F. W. Assessment of human sperm function after recovery from the female reproductive tract. Biol. Reprod. 31, 888–894 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Hunter, R. H. F. Human fertilization in vivo, with special reference to progression, storage and release of competent spermatozoa. Hum. Reprod. 2, 329–332 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Morisawa, M. Cell signaling mechanisms for sperm motility. Zool. Sci. 11, 647–662 (1994).

    CAS  Google Scholar 

  40. Yoshida, M., Murata, M., Inaba, K. & Morisawa, M. A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc. Natl Acad. Sci. USA 99, 14831–14836 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bömer, M. et al. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J. 24, 2741–2752 (2005).

    Article  CAS  Google Scholar 

  42. Ishijima, S. & Mohri, H. in Controls of Sperm Motility: Biological and Clinical Aspects (ed. Gagnon, C.) 29–42 (CRC Press, Boca Raton, Florida, 1990).

    Google Scholar 

  43. Kaupp, U. B. et al. The signal flow and motor response controlling chemotaxis of sea urchin sperm. Nature Cell Biol. 5, 109–117 (2003). This report, together with reference 41, demonstrates that a chemoattractant initiates a rapid and transient rise in the concentration of cyclic GMP in sea-urchin spermatozoa, followed by a transient influx of Ca2+ and resulting in a motor response.

    Article  CAS  PubMed  Google Scholar 

  44. Luconi, M. et al. Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane. J. Clin. Endocrinol. Metab. 83, 877–885 (1998).

    CAS  PubMed  Google Scholar 

  45. Macnab, R. M. & Koshland, D. E. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 69, 2509–2512 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villanueva-Díaz, C., Arias-Martínez, J., Bermejo-Martínez, L. & Vadillo-Ortega, F. Progesterone induces human sperm chemotaxis. Fertil. Steril. 64, 1183–1188 (1995).

    Article  PubMed  Google Scholar 

  47. Sliwa, L. Effect of some sex steroid hormones on human spermatozoa migration in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 58, 173–175 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y., Storeng, R., Dale, P. O., Åbyholm, T. & Tanbo, T. Effects of follicular fluid and steroid hormones on chemotaxis and motility of human spermatozoa in vitro. Gynecol. Endocrinol. 15, 286–292 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Jaiswal, B. S., Tur-Kaspa, I., Dor, J., Mashiach, S. & Eisenbach, M. Human sperm chemotaxis: is progesterone a chemoattractant? Biol. Reprod. 60, 1314–1319 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Teves, M. E. et al. Progesterone at the pM range is a chemoattractant for mammalian spermatozoa. Fertil. Steril. (in the press).

  51. Fukuda, N., Yomogida, K., Okabe, M. & Touhara, K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J. Cell Sci. 117, 5835–5845 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Schall, T. J., Bacon, K., Toy, K. J. & Goeddel, D. V. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347, 669–671 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Alam, R. et al. RANTES is a chemotactic and activating factor for human eosinophils. J. Immunol. 150, 3442–3448 (1993).

    CAS  PubMed  Google Scholar 

  54. Isobe, T. et al. The effect of RANTES on human sperm chemotaxis. Hum. Reprod. 17, 1441–1446 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Brenner, B. M., Ballerman, B. J., Gunning, M. E. & Zeidel, M. L. Diverse biological actions of atrial natriuretic peptide. Physiol. Rev. 70, 665–699 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Ruskoaho, H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol. Rev. 44, 481–602 (1992).

    Google Scholar 

  57. Sundfjord, J. A., Forsdahl, F. & Thibault, G. Physiological levels of immunoreactive ANH-like peptides in human follicular fluid. Acta Endocrinol. 121, 578–580 (1989).

    Article  Google Scholar 

  58. Silvestroni, L., Palleschi, S., Guglielmi, R. & Croce, C. T. Identification and localization of atrial natriuretic factor receptors in human spermatozoa. Arch. Androl. 28, 75–82 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Zamir, N. et al. Atrial natriuretic peptide attracts human spermatozoa in vitro. Biochem. Biophys. Res. Commun. 197, 116–122 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Anderson, R. A., Feathergill, K. A., Rawlins, R. G., Mack, S. R. & Zaneveld, L. J. D. Atrial natriuretic peptide: a chemoattractant of human spermatozoa by a guanylate cyclase-dependent pathway. Mol. Reprod. Dev. 40, 371–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Olson, J. H. et al. Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins. Proc. Natl Acad. Sci. USA 98, 11205–11210 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiang, X., Burnett, L., Rawls, A., Bieber, A. & Chandler, D. The sperm chemoattractant 'allurin' is expressed and secreted from the Xenopus oviduct in a hormone-regulated manner. Dev. Biol. 275, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Ziegler, A., Dohr, G. & Uchanska-Ziegler, B. Possible roles for products of polymorphic MHC and linked olfactory receptor genes during selection processes in reproduction. Am. J. Reprod. Immunol. 48, 34–42 (2002).

    Article  PubMed  Google Scholar 

  64. Darszon, A., Beltran, C., Felix, R., Nishigaki, T. & Trevino, C. L. Ion transport in sperm signaling. Develop. Biol. 240, 1–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Eisenbach, M. Towards understanding the molecular mechanism of sperm chemotaxis. J. Gen. Physiol. 124, 105–108 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Solzin, J. et al. Revisiting the role of H+ in chemotactic signaling of sperm. J. Gen. Physiol. 124, 115–124 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsumoto, M. et al. A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm. Dev. Biol. 260, 314–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Singh, S. et al. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334, 708–712 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Bentley, J. K., Tubb, D. J. & Garbers, D. L. Receptor-mediated activation of spermatozoan guanylate cyclase. J. Biol. Chem. 261, 14859–14862 (1986).

    CAS  PubMed  Google Scholar 

  70. Ward, G. E., Brokaw, C. J., Garbers, D. L. & Vacquier, V. D. Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J. Cell Biol. 101, 2324–2329 (1985). The first identification of a specific, egg-derived sperm chemoattractant in metazoa.

    Article  CAS  PubMed  Google Scholar 

  71. Cook, S. P., Brokaw, C. J., Muller, C. H. & Babcock, D. F. Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses. Dev. Biol. 165, 10–19 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Wood, C. D., Nishigaki, T., Furuta, T., Baba, S. A. & Darszon, A. Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm. J. Cell Biol. 169, 725–731 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brokaw, C. J., Josslin, R. & Bobrow, L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem. Biophys. Res. Commun. 58, 795–800 (1974).

    Article  CAS  PubMed  Google Scholar 

  74. Parmentier, M. et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355, 453–455 (1992). The first demonstration of olfactory receptor transcripts on germ cells.

    Article  CAS  PubMed  Google Scholar 

  75. Branscomb, A., Seger, J. & White, R. L. Evolution of odorant receptors expressed in mammalian testes. Genetics 156, 785–797 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vanderhaeghen, P., Schurmans, S., Vassart, G. & Parmentier, M. Olfactory receptors are displayed on dog mature sperm cells. J. Cell Biol. 123, 1441–1452 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Vanderhaeghen, P., Schurmans, S., Vassart, G. & Parmentier, M. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics 39, 239–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Walensky, L. D., Roskams, A. J., Lefkowitz, R. J., Snyder, S. H. & Ronnett, G. V. Odorant receptors and desensitization proteins colocalize in mammalian sperm. Mol. Med. 1, 130–141 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Walensky, L. D. et al. Two novel odorant receptor families expressed in spermatids undergo 5′-splicing. J. Biol. Chem. 273, 9378–9387 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Defer, N. et al. The olfactory adenylyl cyclase type 3 is expressed in male germ cells. FEBS Lett. 424, 216–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Gautier-Courteille, C., Salanova, M. & Conti, M. The olfactory adenylyl cyclase III is expressed in rat germ cells during spermiogenesis. Endocrinology 139, 2588–2599 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Asai, H. et al. Genomic structure and transcription of a murine odorant receptor gene: differential initiation of transcription in the olfactory and testicular cells. Biochem. Biophys. Res. Commun. 221, 240–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Blackmore, P. F. & Lattanzio, F. A. Cell surface localization of a novel non-genomic progesterone receptor on the head of human sperm. Biochem. Biophys. Res. Commun. 181, 331–336 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Meizel, S. & Turner, K. O. Progesterone acts at the plasma membrane of human sperm. Mol. Cell. Endocrinol. 77, R1–R5 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Harper, C. V., Barratt, C. L. & Publicover, S. J. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca2+]i oscillations and cyclical transitions in flagellar beating. J. Biol. Chem. 279, 46315–46325 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Calogero, A. E. et al. Effects of progesterone on sperm function: mechanisms of action. Hum. Reprod. 15 (Suppl. 1), 28–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Luck, M. R. et al. Follicular fluid responds endothermically to aqueous dilution. Hum. Reprod. 16, 2508–2514 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Leese, H. J. The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Cicinelli, E. et al. Blood to the cornual area of the uterus is mainly supplied from the ovarian artery in the follicular phase and from the uterine artery in the luteal phase. Hum. Reprod. 19, 1003–1008 (2004).

    Article  PubMed  Google Scholar 

  90. Harper, M. J. K. in The Physiology of Reproduction, Vol. 1 (eds Knobil, E. & Neill, J. D.) 123–187 (Raven Press, New York, 1994).

    Google Scholar 

  91. Suarez, S. S. in Fertilization (ed. Hardy, D. M.) 3–28 (Academic Press, San Diego, 2002).

    Book  Google Scholar 

  92. Manor, M. Identification and Purification of Female-Originated Chemotactic Factors. Ph.D. Thesis, The Weizmann Institute of Science (1994).

    Google Scholar 

  93. Sliwa, L. Chemotaction of mouse spermatozoa induced by certain hormones. Arch. Androl. 35, 105–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Sliwa, L. Chemotactic effect of hormones in mouse spermatozoa. Arch. Androl. 32, 83–88 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, S.-L., Kao, C.-C. & Wei, Y.-H. Antithrombin III enhances the motility and chemotaxis of boar sperm. Comp. Biochem. Physiol. 107A, 277–282 (1994).

    CAS  Google Scholar 

  96. Sliwa, L. Substance P and beta-endorphin act as possible chemoattractants of mouse sperm. Arch. Androl. 46, 135–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Sliwa, L. Effect of heparin on human spermatozoa migration in vitro. Arch. Androl. 30, 177–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Sliwa, L. Heparin as a chemoattractant for mouse spermatozoa. Arch. Androl. 31, 149–152 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Sliwa, L. Hyaluronic acid and chemoattractant substance from follicular fluid: in vitro effect of human sperm migration. Arch. Androl. 43, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.E. is an incumbent of Jack and Simon Djanogly Professorial Chair in Biochemistry. L.C.G. is a member of the research staff of the National Council of Research (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Eisenbach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Michael Eisenbach's homepage

Glossary

Capacitation

A ripening process that spermatozoa must undergo in order to penetrate the female's egg and fertilize it.

Acrosome reaction

The release of proteolytic enzymes from the top part of the sperm's head, known as the acrosome, which enables sperm penetration through the egg coat.

Chemotaxis

The movement of cells in the direction of a chemoattractant gradient.

Chemoattractant

A factor (a peptide or any other chemical) that attracts specific cells by chemotaxis.

Thermotaxis

The movement of cells that is directed according to a temperature gradient.

Follicular fluid

A fluid consisting of sex steroid hormones, plasma proteins, mucopolysaccharides and electrolytes that surrounds the ovum in the vesicular ovarian follicle (Graafian follicle).

Oviduct

A tube between the ovary and the uterus, through which the egg is transported from the former to the latter and in which fertilization occurs. It consists of two parts: the isthmus — a narrow part that is closer to the uterus — and the ampulla — a wider part that is closer to the ovary.

Cumulus cells

The cells that form dense layers surrounding a mature egg.

Axoneme

An axial filament complex at the centre of the sperm tail.

Hydrozoa

A class of radially symmetrical marine or freshwater invertebrates of the phylum Cnidaria, with one end of the body bearing the mouth and tentacles. This class includes polyps and medusa.

Hydromedusa

A hydrozoan in the medusoid stage of its life cycle.

Ascidian

A marine invertebrate animal that has a transparent sac-shaped body with openings through which water passes; also known as sea squirt.

Chemokinesis

The speed enhancement of actively moving cells in response to a stimulus.

Photorelease

The rapid release of a compound from its caged (protected) analogue by a short pulse of light.

Hyperactivation

A motility pattern that is characterized by increased velocity, decreased linearity, increased amplitude of lateral head displacement, and flagellar whiplash movement.

Granulosa cells

The cells that form layers surrounding the oocyte within the follicle.

Olfactory receptor

An integral membrane protein that is associated with a G-protein and is involved in effecting the sense of smell.

Spermatid

An immature gamete that develops into a spermatozoon.

Nuclear progesterone receptor

A progesterone-inducible transcription factor that is located intracellularly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenbach, M., Giojalas, L. Sperm guidance in mammals — an unpaved road to the egg. Nat Rev Mol Cell Biol 7, 276–285 (2006). https://doi.org/10.1038/nrm1893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing