Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gating prokaryotic mechanosensitive channels

Key Points

  • When cells are exposed to a low external osmolarity, water influx generates large turgor pressures that can ultimately affect the integrity of the plasma membrane. In prokaryotes, this type of osmotic challenge is normally relieved by the opening of non-selective mechanosensitive channels.

  • Mechanosensitive channels can be studied in prokaryotes using patch-clamp methods that can be applied to giant Escherichia coli spheroplasts or using giant liposome preparations that contain reconstituted protein. Numerous activities of mechanosensitive channels have been reported under various conditions in the E. coli inner membrane.

  • According to their single-channel properties, mechanosensitive channels are classified as MscL, MscS and MscM, for mechanosensitive channels of large, small and mini conductances, respectively.

  • The structures of MscL and MscS are known at atomic resolution, and they are markedly different. For example, MscL is a homopentamer and its transmembrane (TM)-1 helices line the aqueous channel, whereas MscS is a homoheptamer and its aqueous channel is lined mostly by TM3 helices.

  • The fact that both MscL and MscS can be activated by pressure gradients after their reconstitution into defined lipid systems indicates that gating is triggered by tension that is transmitted directly through the bilayer.

  • Gating in MscL is associated with a massive conformational change, which leads to the generation of a >25-Ă… aqueous pore. This change involves the movement of TM1 helices away from the five-fold symmetry axis through a large tilting movement relative to the plane of the bilayer. The central tenets of this 'helix-tilt' hypothesis have been confirmed using functional, biochemical, computational and spectroscopic approaches.

  • Gating in MscS is significantly more complex than in MscL, because the channel is not only activated by tension, but can also be modulated by voltage. In addition, it has a complex inactivation mechanism that significantly reduces the probability of it being open in the presence of a sustained stimulus. Current proposals for gating are based on the tilting of the TM1–TM2 hairpins, which would promote the movement of TM3 away from the seven-fold symmetry axis and would change the overall conformation of the cytoplasmic domain.

Abstract

Prokaryotic mechanosensitive channels function as molecular switches that transduce bilayer deformations into protein motion. These protein structural rearrangements generate large non-selective pores that function as a prokaryotic 'last line of defence' to sudden osmotic challenges. Once considered an electrophysiological artefact, recent structural, spectroscopic and functional data have placed this class of protein at the centre of efforts to understand the molecular basis of lipid–protein interactions and their influence on protein function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of mechanosensitive channels in the prokaryotic response to hypo-osmotic challenges.
Figure 2: Functional and structural properties of MscL.
Figure 3: Functional and structural properties of MscS.
Figure 4: Hydrophobic gates and permeation pathways in mechanosensitive channels.
Figure 5: Structural models for the gating of MscL.
Figure 6: The gating mechanism of MscS.

Similar content being viewed by others

References

  1. Broder, S. & Venter, J. C. Sequencing the entire genomes of free-living organisms: the foundation of pharmacology in the new millennium. Annu. Rev. Pharmacol. Toxicol. 40, 97–132 (2000).

    Article  CAS  Google Scholar 

  2. Poolman, B. et al. How do membrane proteins sense water stress? Mol. Microbiol. 44, 889–902 (2002).

    Article  CAS  Google Scholar 

  3. Wood, J. M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63, 230–262 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sukharev, S. I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657 (1997).

    Article  CAS  Google Scholar 

  5. Ghazi, A., Berrier, C., Ajouz, B. & Besnard, M. Mechanosensitive ion channels and their mode of activation. Biochimie 80, 357–362 (1998).

    Article  CAS  Google Scholar 

  6. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).

    Article  CAS  Google Scholar 

  7. Blount, P. Molecular mechanisms of mechanosensation: big lessons from small cells. Neuron 37, 731–734 (2003).

    Article  CAS  Google Scholar 

  8. Kung, C. & Blount, P. Channels in microbes: so many holes to fill. Mol. Microbiol. 53, 373–380 (2004).

    Article  CAS  Google Scholar 

  9. Sukharev, S. & Anishkin, A. Mechanosensitive channels: what can we learn from 'simple' model systems? Trends Neurosci. 27, 345–351 (2004).

    Article  CAS  Google Scholar 

  10. Sukharev, S. & Corey, D. P. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 2004, re4 (2004).

    PubMed  Google Scholar 

  11. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999). The molecular identification and cloning of MscS.

    Article  CAS  Google Scholar 

  12. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265–268 (1994). The classic biochemical characterization and cloning of the first prokaryotic mechanosensitive channel, MscL.

    Article  CAS  Google Scholar 

  13. Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002).

    Article  CAS  Google Scholar 

  14. Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730 (2004).

    Article  CAS  Google Scholar 

  15. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honoré, E. . Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10128–10133 (2000). The identification and detailed characterization of the lysolipid activation of two-pore eukaryotic mechanosensitive channels.

    Article  CAS  Google Scholar 

  16. Patel, A. J. et al. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17, 4283–4290 (1998).

    Article  CAS  Google Scholar 

  17. Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell. Biol. 7, 179–185 (2005). Identifies a eukaryotic mechanosensitive channel that is activated by 'bilayer coupling'.

    Article  CAS  Google Scholar 

  18. Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005).

    Article  CAS  Google Scholar 

  19. Martinac, B., Buechner, M., Delcour, A. H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA 84, 2297–2301 (1987).

    Article  CAS  Google Scholar 

  20. Berrier, C., Coulombe, A., Houssin, C. & Ghazi, A. A patch-clamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett. 259, 27–32 (1989).

    Article  CAS  Google Scholar 

  21. Delcour, A. H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989).

    Article  CAS  Google Scholar 

  22. Nakamaru, Y., Takahashi, Y., Unemoto, T. & Nakamura, T. Mechanosensitive channel functions to alleviate the cell lysis of marine bacterium, Vibrio alginolyticus, by osmotic downshock. FEBS Lett. 444, 170–172 (1999).

    Article  CAS  Google Scholar 

  23. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993). Shows that prokaryotic mechanosensitive channels are gated by interactions with the lipid membrane alone.

    Article  CAS  Google Scholar 

  24. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998). The first crystal structure of a mechanosensitive channel. This structure reveals a homopentamer with two TM segments per subunit.

    Article  CAS  Google Scholar 

  25. Akitake, B., Anishkin, A. & Sukharev, S. The 'dashpot' mechanism of stretch-dependent gating in MscS. J. Gen. Physiol. 125, 143–154 (2005).

    Article  CAS  Google Scholar 

  26. Koprowski, P. & Kubalski, A. Voltage-independent adaptation of mechanosensitive channels in Escherichia coli protoplasts. J. Membr. Biol. 164, 253–262 (1998).

    Article  CAS  Google Scholar 

  27. Bass, R. B., Strop, P., Barclay, M. & Rees, D. C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002). The determination of the MscS crystal structure, which shows that the channel is a homoheptamer with three TM segments per subunit and a large cytoplasmic domain that contains a significant water-filled cavity.

    Article  CAS  Google Scholar 

  28. Sotomayor, M. & Schulten, K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys. J. 87, 3050–3065 (2004).

    Article  CAS  Google Scholar 

  29. Anishkin, A., Chiang, C. S. & Sukharev, S. Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J. Gen. Physiol. 125, 155–170 (2005).

    Article  CAS  Google Scholar 

  30. Sukharev, S., Betanzos, M., Chiang, C.-S. & Guy, H. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001). The first proposal of the helix-tilt model for MscL gating, which was based on computer modelling and crosslinking experiments.

    Article  CAS  Google Scholar 

  31. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J. Gen. Physiol. 118, 193–206 (2001).

    Article  CAS  Google Scholar 

  32. Calladine, C. R., Pratap, V., Chandran, V., Mizuguchi, K. & Luisi, B. F. Cylindrical channels from concave helices. Science 299, 661–662 (2003).

    Article  CAS  Google Scholar 

  33. Edwards, M. D. et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nature Struct. Mol. Biol. 12, 113–119 (2005).

    Article  CAS  Google Scholar 

  34. Cui, C., Smith, D. O. & Adler, J. Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membrane by whole-cell patch clamp recording. J. Membr. Biol. 144, 31–42 (1995).

    Article  CAS  Google Scholar 

  35. Mura, C., Phillips, M., Kozhukhovsky, A. & Eisenberg, D. Structure and assembly of an augmented Sm-like archaeal protein 14-mer. Proc. Natl Acad. Sci. USA 100, 4539–4544 (2003).

    Article  CAS  Google Scholar 

  36. Anishkin, A. et al. On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. J. Gen. Physiol. 121, 227–244 (2003).

    Article  CAS  Google Scholar 

  37. Elmore, D. E. & Dougherty, D. A. Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys. J. 81, 1345–1359 (2001).

    Article  CAS  Google Scholar 

  38. Gruner, S. in Biologically Inspired Physics (ed. Peliti, L.) 127–135 (Plenum, New York, 1991).

    Book  Google Scholar 

  39. Israelachvili, J. Intermolecular and Surface Forces (Academic, New York, 1992).

    Google Scholar 

  40. Killian, J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta 1376, 401–415 (1998).

    Article  CAS  Google Scholar 

  41. Mouritsen, O. G. & Bloom, M. Mattress model of lipid–protein interactions in membranes. Biophys. J. 46, 141–153 (1984).

    Article  CAS  Google Scholar 

  42. Bogdanov, M. & Dowhan, W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J. Biol. Chem. 270, 732–739 (1995).

    Article  CAS  Google Scholar 

  43. Lee, A. G. How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim. Biophys. Acta 1376, 381–390 (1998).

    Article  CAS  Google Scholar 

  44. Cantor, R. S. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. B 101, 1723–1725 (1997).

    Article  CAS  Google Scholar 

  45. Dan, N. & Safran, S. A. Effect of lipid characteristics on the structure of transmembrane proteins. Biophys. J. 75, 1410–1414 (1998).

    Article  CAS  Google Scholar 

  46. Wiggins, P. & Phillips, R. Membrane–protein interactions in mechanosensitive channels. Biophys. J. 88, 880–902 (2005).

    Article  CAS  Google Scholar 

  47. Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263 (1990). Shows, through the membrane incorporation of asymmetric amphipaths, that the gating of prokaryotic mechanosensitive channels can be induced by changes in membrane tension.

    Article  CAS  Google Scholar 

  48. Lewis, B. A. & Engelman, D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983).

    Article  CAS  Google Scholar 

  49. Mandersloot, J. G., Reman, F. C., Van Deenen, L. L. & De Gier, J. Barrier properties of lecithin/lysolecithin mixtures. Biochim. Biophys. Acta 382, 22–26 (1975).

    Article  CAS  Google Scholar 

  50. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9, 696–703 (2002). Evaluates the intra-bilayer forces that trigger gating in MscL: hydrophobic mismatch versus distortions in the transmembrane-pressure profile.

    Article  CAS  Google Scholar 

  51. Moe, P. & Blount, P. Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry 44, 12239–12244 (2005).

    Article  CAS  Google Scholar 

  52. Maurer, J. A. & Dougherty, D. A. Generation and evaluation of a large mutational library from the E. coli mechanosensitive channel of large conductance, MscL. Implications for channel gating and evolutionary design. J. Biol. Chem. 278, 21076–21082 (2003).

    Article  CAS  Google Scholar 

  53. Yoshimura, K., Nomura, T. & Sokabe, M. Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys. J. 86, 2113–2120 (2004). Proposes a potential site for a tension sensor in MscL on the basis of surface-scanning mutagenesis of the periplasmic loops of the channel.

    Article  CAS  Google Scholar 

  54. Cruickshank, C. C., Minchin, R. F., Le Dain, A. C. & Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73, 1925–1931 (1997). The first evaluation of the size of the open pore in MscL, which was based on the permeation of dextrans of different lengths.

    Article  CAS  Google Scholar 

  55. Yoshimura, K., Batiza, A., Schroeder, M., Blount, P. & Kung, C. Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys. J. 77, 1960–1972 (1999).

    Article  CAS  Google Scholar 

  56. Sukharev, S., Durell, S. R. & Guy, H. R. Structural models of the MscL gating mechanism. Biophys. J. 81, 917–936 (2001).

    Article  CAS  Google Scholar 

  57. Betanzos, M., Chiang, C. S., Guy, H. R. & Sukharev, S. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nature Struct. Biol. 9, 704–710 (2002).

    Article  CAS  Google Scholar 

  58. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002). Presents direct spectroscopic evidence for the helix-tilt model of MscL gating and a model of open MscL.

    Article  CAS  Google Scholar 

  59. Iscla, I., Levin, G., Wray, R., Reynolds, R. & Blount, P. Defining the physical gate of a mechanosensitive channel, MscL, by engineering metal-binding sites. Biophys. J. 87, 3172–3180 (2004).

    Article  CAS  Google Scholar 

  60. Levin, G. & Blount, P. Cysteine scanning of MscL transmembrane domains reveals residues critical for mechanosensitive channel gating. Biophys. J. 86, 2862–2870 (2004).

    Article  CAS  Google Scholar 

  61. Blount, P., Schroeder, M. J. & Kung, C. Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J. Biol. Chem. 272, 32150–32157 (1997).

    Article  CAS  Google Scholar 

  62. Hase, C. C., Le Dain, A. C. & Martinac, B. Molecular dissection of the large mechanosensitive ion channel (MscL) of E. coli: mutants with altered channel gating and pressure sensitivity. J. Memb. Biol. 157, 17–25 (1997).

    Article  CAS  Google Scholar 

  63. Sukharev, S. I., Schroeder, M. J. & McCaslin, D. R. Stoichiometry of the large conductance bacterial mechanosensitive channel of E. coli. A biochemical study. J. Membr. Biol. 171, 183–193 (1999).

    Article  CAS  Google Scholar 

  64. Edwards, M. D., Booth, I. R. & Miller, S. Gating the bacterial mechanosensitive channels: MscS a new paradigm? Curr. Opin. Microbiol. 7, 163–167 (2004).

    Article  CAS  Google Scholar 

  65. Anishkin, A. & Sukharev, S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86, 2883–2895 (2004).

    Article  CAS  Google Scholar 

  66. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003).

    Article  CAS  Google Scholar 

  67. Long, S. B., Campbell, E. B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005).

    Article  CAS  Google Scholar 

  68. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  Google Scholar 

  69. Cuello, L. G., Cortes, D. M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004).

    Article  CAS  Google Scholar 

  70. Koprowski, P. & Kubalski, A. C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278, 11237–11245 (2003).

    Article  CAS  Google Scholar 

  71. Miller, S., Edwards, M. D., Ozdemir, C. & Booth, I. R. The closed structure of the MscS mechanosensitive channel. Cross-linking of single cysteine mutants. J. Biol. Chem. 278, 32246–32250 (2003).

    Article  CAS  Google Scholar 

  72. Holt, J. R. & Corey, D. P. Two mechanisms for transducer adaptation in vertebrate hair cells. Proc. Natl Acad. Sci. USA 97, 11730–11735 (2000).

    Article  CAS  Google Scholar 

  73. Ruthe, H. J. & Adler, J. Fusion of bacterial spheroplasts by electric fields. Biochim. Biophys. Acta 819, 105–113 (1985).

    Article  CAS  Google Scholar 

  74. Sukharev, S. Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J. 13 (Suppl.), S55–S61 (1999).

    Article  CAS  Google Scholar 

  75. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to B. Martinac, D. M. Cortes, V. Vasquez and J. Wu for illuminating discussions regarding mechanosensitive channels and mechanosensitivity. I am also grateful for the support of the United States Public Health Service.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

Spheroplast

A Gram-negative bacterium that has had its cell wall almost completely removed.

Membrane–liposome fusion

A strategy to electrophysiologically characterize inaccessible membranes that involves fusing them with liposomes. The large proteoliposomes are then amenable to standard patch-clamp techniques.

Sm proteins

A class of proteins that form the core of small nuclear ribonucleoprotein particles (snRNPs), and are therefore key components of several mRNA-processing assemblies, including the spliceosome.

Hydrophobic mismatch

Defined as the difference between the hydrophobic length of the transmembrane structures (α-helices or β-sheets) of integral membrane proteins and the hydrophobic thickness of the membranes they span.

Amphipath

A molecule that contains both hydrophobic and hydrophilic regions, and tends to become incorporated into membrane interfaces.

Lysolipid

A phospholipid molecule that lacks one of the two acyl chains.

NiEdda

(nickel ethylenediaminediacetic acid). A chelated Ni(II) complex that is used to measure solvent accessibility in electron-paramagnetic-resonance spectroscopy.

Vapour lock

A mechanism by which solvent flow in a narrow space is interrupted by the formation of a 'de-wetted' region.

S3–S4 'paddle'

A charged structural motif that is found in voltage-dependentchannels and is proposed to be responsible for transmembrane voltage sensing.

Crystallographic B-factor

(also known as temperature or Debye–Waller factor). It describes the degree to which the electron density is spread out owing to local disorder or lattice disorder, or both.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perozo, E. Gating prokaryotic mechanosensitive channels. Nat Rev Mol Cell Biol 7, 109–119 (2006). https://doi.org/10.1038/nrm1833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing