Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Not so divided: the common basis of plant and animal cell division

Abstract

Plant cells do not have centrioles and their mitosis is frequently likened to the chromosome-based mechanism seen in acentriolar animal cells. However, this is a false analogy. Although plants can use this mechanism, they generally divide by a method that uses bipolar mitotic caps, which is more similar to the canonical centrosome-based method of animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of plant cell division.
Figure 2: Two mechanisms of mitosis in animal cells.
Figure 3: Polar caps and preprophase bands.
Figure 4: 'Capless' plant cell division resembles the chromosome-based mechanism of animals.
Figure 5: Plant and animal cytokinesis.

Similar content being viewed by others

References

  1. Pickett-Heaps, J. D. The evolution of the mitotic apparatus: an attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios. 3, 257–280 (1969).

    Google Scholar 

  2. McCollum, D. Cytokinesis: the central spindle takes center stage. Curr Biol. 14, R953–R955 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Chan, J. et al. EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nature Cell Biol. 5, 967–971 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Shaw, S. L., Kamyar, R. & Ehrhardt, D. W. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300, 1715–1718 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Dixit, R. & Cyr, R. Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16, 3274–3284 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan, J. et al. The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc. Natl Acad. Sci. USA. 96, 14931–14936 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smertenko, A. P. et al. The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16, 2035–2047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dhonukshe, P. & Gadella, T. W. Jr. Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein–CLIP170 microtubule plus-end labeling. Plant Cell 15, 597–611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vos, J. W., Dogterom, M. & Emons, A. M. Microtubules become more dynamic but not shorter during preprophase band formation: a possible 'search-and-capture' mechanism for microtubule translocation. Cell Motil. Cytoskeleton. 57, 246–258 (2004).

    Article  PubMed  Google Scholar 

  10. Vos, J. W., et al. Microtubule dynamics during preprophase band formation and the role of endoplasmic microtubules during root hair elongation. Cell Biol. Int. 27, 295 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Chan, J. et al. Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17, 1737–1748 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dhonukshe, P. et al. Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol. 3, 11 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Granger, C. & Cyr, R. Use of abnormal preprophase bands to decipher division plane determination. J. Cell Sci. 114, 599–607 (2001).

    CAS  PubMed  Google Scholar 

  14. Yoneda, A. et al. Decision of spindle poles and division plane by double preprophase bands in a BY-2 cell line expressing GFP–tubulin. Plant Cell Physiol. 46, 531–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Rosenblatt, J. Spindle assembly: asters part their separate ways. Nature Cell Biol. 7, 219–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kirschner, M. W. & Mitchison, T. Microtubule dynamics. Nature 324, 621 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Walczak, C. E. et al. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Heald, R. & Weis, K. Spindles get the ran around. Trends Cell Biol. 10, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biol. 4, 871–879 (2002).

    CAS  PubMed  Google Scholar 

  23. Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khodjakov, A. et al. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Gadde, S. & Heald, R. Mechanisms and molecules of the mitotic spindle. Curr. Biol. 14, R797–R805 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Maiato, H., Rieder, C. L. & Khodjakov, A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167, 831–840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaughn, K. C. & Harper, J. D. Microtubule-organizing centers and nucleating sites in land plants. Int. Rev. Cytol. 181, 75–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Mazia, D. Centrosomes and mitotic poles. Exp. Cell Res. 153, 1–15 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, B. et al. A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J. Cell Sci. 104, 1217–1228 (1993).

    CAS  PubMed  Google Scholar 

  30. Smirnova, E. A. & Bajer, A. S. Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemanthus endosperm. Cell Motil. Cytoskeleton 40, 22–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Marcus, A. I. et al. A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol. Biol. Cell 14, 1717–1726 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lloyd, C. W. in The Cytoskeletal Basis of Plant Growth and Form (ed. Lloyd, C. W.) 245–257 (Academic, London, 1991).

    Google Scholar 

  33. Lloyd, C. W. & Traas, J. A. The role of F-actin in determining the division plane of carrot suspension cells. Drug studies. Development 102, 211–221 (1988).

    CAS  Google Scholar 

  34. Van Lammeren, A. A. M. Structure and function of the microtubular cytoskeleton during endosperm development in wheat: an immunofluorescent study. Protoplasma 146, 18–27 (1988).

    Article  Google Scholar 

  35. Brown, R. C. & Lemmon, B. E. Transition from mitotic apparatus to cytokinetic apparatus in pollen mitosis of the slipper orchid. Protoplasma 198, 43–52 (1997).

    Article  Google Scholar 

  36. Dolan, L. et al. Cellular organisation of the Arabidopsis thaliana root. Development 119, 71–84 (1993).

    CAS  PubMed  Google Scholar 

  37. Euteneuer, U. & McIntosh, J. R. Polarity of midbody and phragmoplast microtubules. J. Cell Biol. 87, 509–515 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Staehelin, L. A. & Hepler, P. K. Cytokinesis in higher plants. Cell 84, 821–824 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Schuyler, S. C., Liu, J. Y. & Pellman, D. The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J. Cell Biol. 160, 517–528 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loiodice, I. et al. Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol. Biol. Cell 16, 1756–1768 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verbrugghe, K. J. & White, J. G. SPD-1 is required for the formation of the spindle midzone but is not essential for the completion of cytokinesis in C. elegans embryos. Curr. Biol. 14, 1755–1760 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Verni, F. et al. Feo, the Drosophila homolog of PRC1, is required for central-spindle formation and cytokinesis. Curr. Biol. 14, 1569–1575 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, C. -J. & Sonobe, S. Identification and preliminary characterization of a 65kDa higher plant microtubule-associated protein. J. Cell Sci. 105, 891–901 (1993).

    CAS  Google Scholar 

  44. Chan, J., Rutten, T. & Lloyd, C. Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J. 10, 251–259 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Smertenko, A. et al. A new class of microtubule-associated proteins in plants. Nature Cell Biol. 2, 750–753 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Van Damme, D. et al. In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol. 136, 3956–3967 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mao, G., Chan, J., Calder, G., Doonan, J. H. & Lloyd, C. W. Modulated targeting of GFP–AtMAP65-1 to central spindle microtubules during division. Plant J. 43, 469–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Mollinari, C., et al. Ablation of PRC1 by small interfering RNA demonstrates that cytokinetic abscission requires a central spindle bundle in mammalian cells, whereas completion of furrowing does not. Mol. Biol. Cell 16, 1043–1055 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mollinari, C. et al. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 157, 1175–1186 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kurasawa, Y. et al. Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J. 23, 3237–3248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otegui, M. S., Verbrugghe, K. J. & Skop, A. R. Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol. 15, 404–413 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.W.L. and J.C. are supported by the Biotechnology and Biological Sciences Research Council. We thank G. Calder for assistance with the imaging and H. Buschmann for supplying the image of the GFP–tubulin-labelled N. tabacum BY-2 cell for the contents pages.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Flybase

Feo

Saccharomyces genome database

Ase1

Swiss-Prot

Eg5

MAP65

PRC1

SPD-1

TPX2

FURTHER INFORMATION

Clive Lloyd's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, C., Chan, J. Not so divided: the common basis of plant and animal cell division. Nat Rev Mol Cell Biol 7, 147–152 (2006). https://doi.org/10.1038/nrm1831

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing