Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arp2/3 and SCAR: plants move to the fore

Key Points

  • In animals and protists the Arp2/3 complex is required for the formation of membrane protrusions, such as lamellipodia and filopodia, which are essential for cell motility.

  • In yeast and animals, the Arp2/3 complex also drives actin assembly, which is associated with endocytotic vesicle formation. Yeast growth is severely disabled in the absence of Arp2/3-complex-powered endocytosis.

  • Unlike yeast and animals, plants continue to thrive with null-mutant alleles of Arp2/3-complex subunits. Epidermal cells of mutant plants show subtle morphogenetic phenotypes.

  • The SCAR/WAVE protein complex regulates Arp2/3-complex activation in the context of animal and protist cell motility. Other Arp2/3-complex activators, such as WASP, regulate endocytotic-vesicle formation.

  • Although plant cells form neither lamellipodia nor filopodia, plants retain genes encoding the components of the SCAR/WAVE complex. Plant homologues of most other known Arp2/3-complex regulators have not yet been identified.

  • Null mutant alleles of SCAR/WAVE complex proteins can phenocopy Arp2/3-complex mutants, implying that the SCAR/WAVE complex is the main regulator of the Arp2/3 complex in plants. In the absence of cell motility, plants must exploit the relationship between the SCAR/WAVE complex and the Arp2/3 complex in a novel cellular context that could be relevant for all eukaryotes.

Abstract

The actin-nucleating Arp2/3 complex is essential for life in yeast and animals, but not in plants, in which mutants of Arp2/3 complex components show relatively minor developmental abnormalities. Animal cells control the activity of the Arp2/3 complex through the suppressor of cyclic AMP receptor (SCAR) complex to achieve cell motility. Amazingly, plants have also retained the SCAR cell-motility pathway, and now provide a unique model for the study of new aspects of SCAR function in the absence of cell motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plant F-actin.
Figure 2: The Arp2/3 complex.
Figure 3: Branching F-actin in lamellipodia.
Figure 4: A. thaliana distorted trichomes.
Figure 5: SCAR-complex binding partners.

Similar content being viewed by others

References

  1. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Hurt, M., Neelam, S., Niederkorn, J. & Alizadeh, H. Pathogenic Acanthamoeba spp secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease. Infect. Immun. 71, 6243–6255 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Preston, T. M. & King, C. A. Amoeboid locomotion of Acanthamoeba castellanii with special reference to cell-substratum interactions. J. Gen. Microbiol. 130, 2317–2323 (1984).

    CAS  PubMed  Google Scholar 

  4. Higgs, H. N., Blanchoin, L. & Pollard, T. D. Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Hudson, A. M. & Cooley, L. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. J. Cell Biol. 156, 677–687 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirfel, G., Rigort, A., Borm, B. & Herzog, V. Cell migration: mechanisms of rear detachment and the formation of migration tracks. Eur. J. Cell Biol. 83, 717–724 (2004).

    Article  PubMed  Google Scholar 

  7. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Mejillano, M. R., et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Schafer, D. A., et al. Visualization and molecular analysis of actin assembly in living cells. J. Cell Biol. 143, 1919–1930 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samarin, S., et al. How VASP enhances actin-based motility. J. Cell Biol. 163, 131–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Svitkina, T. M., et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biyasheva, A., Svitkina, T., Kunda, P., Baum, B. & Borisy, G. Cascade pathway of filopodia formation downstream of SCAR. J. Cell Sci. 117, 837–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kunda, P., Craig, G., Dominguez, V. & Baum, B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol. 13, 1867–1875 (2003). RNAi study of D. melanogaster tissue culture cells that describes phenotypic similarity between members of the SCAR complex and identifies the importance of ABI and other members of the SCAR complex in promoting SCAR localization to the leading edge.

    Article  CAS  PubMed  Google Scholar 

  14. Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003). RNAi study of D. melanogaster tissue culture cells that shows a common lamellipodia-reducing phenotype between four subunits of the SCAR complex and the Arp2/3 complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sawa, M., et al. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J. Cell Sci. 116, 1505–1518 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Zallen, J. A., et al. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J. Cell Biol. 156, 689–701 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moreau, V., Galan, J. M., Devilliers, G., Haguenauer-Tsapis, R. & Winsor, B. The yeast actin-related protein Arp2p is required for the internalization step of endocytosis. Mol. Biol. Cell 8, 1361–1375 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003). Dual-labelling of Arp2/3 activators in budding yeast reveals a sequential localization of activators to endocytic actin patches that correlates with distinct phases of actin patch behaviour.

    Article  CAS  PubMed  Google Scholar 

  19. Winter, D. C., Choe, E. Y. & Li, R. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc. Natl Acad. Sci. USA 96, 7288–7293 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pan, F., Egile, C., Lipkin, T. & Li, R. ARPC1/Arc40 mediates the interaction of the actin-related protein 2 and 3 complex with Wiskott-Aldrich syndrome protein family activators. J. Biol. Chem. 279, 54629–54636 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, J. et al. Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits. J. Cell Sci. 118, 807–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Mathur, J. et al. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130, 3137–3146 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Le, J., El-Assal Sel, D., Basu, D., Saad, M. E. & Szymanski, D. B. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr. Biol. 13, 1341–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. El-Din El-Assal, S., Le, J., Basu, D., Mallery, E. L. & Szymanski, D. B. DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J. 38, 526–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Li, S., Blanchoin, L., Yang, Z. & Lord, E. M. The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 132, 2034–2044 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mathur, J., Mathur, N., Kernebeck, B. & Hulskamp, M. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15, 1632–1645 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathur, J., Spielhofer, P., Kost, B. & Chua, N. The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126, 5559–5568 (1999).

    CAS  PubMed  Google Scholar 

  29. Szymanski, D. B., Marks, M. D. & Wick, S. M. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11, 2331–2347 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sheahan, M. B., Staiger, C. J., Rose, R. J. & McCurdy, D. W. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol. 136, 3968–3978 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bear, J. E., Rawls, J. F. & Saxe, C. L., 3rd SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol. 142, 1325–1335 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Machesky, L. M., et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002). Describes the discovery of the SCAR complex and introduces a model whereby members of the complex repress SCAR activity in the absence of active Rac1.

    Article  CAS  PubMed  Google Scholar 

  35. Gautreau, A. et al. Purification and architecture of the ubiquitous Wave complex. Proc. Natl Acad. Sci. USA 101, 4379–4383 (2004). An analysis of the interactions between members of the SCAR complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biol. 6, 319–327 (2004). Includes an analysis of SCAR complex structure in agreement with Gautreau et al . and shows in vitro data supporting a model whereby the SCAR complex does not fragment upon interaction with activated Rac.

    Article  CAS  PubMed  Google Scholar 

  37. Vartiainen, M. K. & Machesky, L. M. The WASP-Arp2/3 pathway: genetic insights. Curr. Opin. Cell Biol. 16, 174–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, W. L., Bezanilla, M. & Pollard, T. D. Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J. Cell. Biol. 151, 789–800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sirotkin, V., Beltzner, C. C., Marchand, J. B. & Pollard, T. D. Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J. Cell Biol. 170, 637–648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jonsdottir, G. A. & Li, R. Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr. Biol. 14, 1604–1609 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Eitzen, G., Wang, L., Thorngren, N. & Wickner, W. Remodeling of organelle-bound actin is required for yeast vacuole fusion. J. Cell Biol. 158, 669–679 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mise-Omata, S., Montagne, B., Deckert, M., Wienands, J. & Acuto, O. Mammalian actin binding protein 1 is essential for endocytosis but not lamellipodia formation: functional analysis by RNA interference. Biochem. Biophys. Res. Commun. 301, 704–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Duncan, M. C., Cope, M. J., Goode, B. L., Wendland, B. & Drubin, D. G. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nature Cell Biol. 3, 687–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Seastone, D. J. et al. The WASp-like protein scar regulates macropinocytosis, phagocytosis and endosomal membrane flow in Dictyostelium. J. Cell Sci. 114, 2673–2683 (2001).

    CAS  PubMed  Google Scholar 

  46. Basu, D., El-Assal Sel, D., Le, J., Mallery, E. L. & Szymanski, D. B. Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131, 4345–4355 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Basu, D. et al. DISTORTED3/SCAR2 is a putative Arabidopsis WAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis. Plant Cell 17, 502–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brembu, T., Winge, P., Seem, M. & Bones, A. M. NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16, 2335–2349 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deeks, M. J., Kaloriti, D., Davies, B., Malho, R. & Hussey, P. J. Arabidopsis NAP1 is essential for Arp2/3-dependent trichome morphogenesis. Curr. Biol. 14, 1410–1414 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. El-Assal Sel, D., Le, J., Basu, D., Mallery, E. L. & Szymanski, D. B. Arabidopsis GNARLED encodes a NAP125 homolog that positively regulates ARP2/3. Curr. Biol. 14, 1405–1409 (2004).

    Article  CAS  Google Scholar 

  51. Li, Y., Sorefan, K., Hemmann, G. & Bevan, M. W. Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiol. 136, 3616–3627 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saedler, R., Zimmermann, I., Mutondo, M. & Hulskamp, M. The Arabidopsis KLUNKER gene controls cell shape changes and encodes the AtSRA1 homolog. Plant Mol. Biol. 56, 775–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Zimmermann, I., Saedler, R., Mutondo, M. & Hulskamp, M. The Arabidopsis GNARLED gene encodes the NAP125 homolog and controls several actin-based cell shape changes. Mol. Genet. Genomics 272, 290–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, X., Dyachok, J., Krishnakumar, S., Smith, L. G. & Oppenheimer, D. G. IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. Plant Cell 17, 2314–2326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deeks, M. J. & Hussey, P. J. Arp2/3 and 'the shape of things to come'. Curr. Opin. Plant Biol. 6, 561–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Frank, M. J. & Smith, L. G. A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr. Biol. 12, 849–853 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Frank, M. J., Cartwright, H. N. & Smith, L. G. Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development 130, 753–762 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Mullins, R. D., Stafford, W. F. & Pollard, T. D. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell Biol. 136, 331–343 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Frank, M. et al. Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc. Natl Acad. Sci. USA 101, 16379–16384 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hummel, T., Leifker, K. & Klambt, C. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization. Genes Dev. 14, 863–873 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Blagg, S. L., Stewart, M., Sambles, C. & Insall, R. H. PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Curr. Biol. 13, 1480–1487 (2003). The D. discoideum member of the PIR121 family is associated with a phenotype that supports the SCAR-complex model of reference 34.

    Article  CAS  PubMed  Google Scholar 

  64. Steffen, A. et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J. 23, 749–759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blagg, S. L. & Insall, R. H. Control of SCAR activity in Dictyostelium discoideum. Biochem. Soc. Trans. 32, 1113–1114 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Schenck, A., et al. WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity. Developmental Biology 274, 260–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Blagg, S. L. & Insall, R. H. Solving the WAVE function. Nature Cell Biol. 6, 279–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Bogdan, S., Grewe, O., Strunk, M., Mertens, A. & Klambt, C. Sra-1 interacts with Kette and Wasp and is required for neuronal and bristle development in Drosophila. Development 131, 3981–3989 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Bogdan, S. & Klambt, C. Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development 130, 4427–4437 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Stovold, C. F., Millard, T. H. & Machesky, L. M. Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol. 6, 11 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Innocenti, M., et al. Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell Biol. 160, 17–23 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Scita, G., et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Soderling, S. H., et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nature Cell Biol. 4, 970–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Shi, J., Scita, G. & Casanova, J. E. Wave2 signaling mediates invasion of polarized epithelial cells by Salmonella typhimurium. J. Biol. Chem. 280, 29849–29855 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Croce, A., et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nature Cell Biol. 6, 1173–1179 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Ketelaar, T. Spatial organisation of cell expansion by the cytoskeleton. Thesis, Univ. Wageinigen (2002).

  78. Wang, X. et al. AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol. 126, 575–586 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, H., Lee, M. M. & Schiefelbein, J. W. Regulation of the cell expansion gene RHD3 during Arabidopsis development. Plant Physiol. 129, 638–649 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lam, B. C., Sage, T. L., Bianchi, F. & Blumwald, E. Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis. Plant Cell 13, 2499–2512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Balguerie, A., Sivadon, P., Bonneu, M. & Aigle, M. Rvs167p, the budding yeast homolog of amphiphysin, colocalizes with actin patches. J. Cell Sci. 112, 2529–2537 (1999).

    CAS  PubMed  Google Scholar 

  82. Friesen, H., Colwill, K., Robertson, K., Schub, O. & Andrews, B. Interaction of the Saccharomyces cerevisiae cortical actin patch protein Rvs167p with proteins involved in ER to Golgi vesicle trafficking. Genetics 170, 555–568 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lila, T. & Drubin, D. G. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol. Biol. Cell 8, 367–385 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang, T. Y., Renaud-Young, M. & Young, D. Nak1 interacts with Hob1 and Wsp1 to regulate cell growth and polarity in Schizosaccharomyces pombe. J. Cell Sci. 118, 199–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Baluska, F. et al. F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol. 130, 422–431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Geldner, N., Friml, J., Stierhof, Y. D., Jurgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Grebe, M., et al. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13, 1378–1387 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Baluska, F., Samaj, J., Hlavacka, A., Kendrick-Jones, J. & Volkmann, D. Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J. Exp. Bot. 55, 463–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Boevink, P. et al. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441–447 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Nebenfuhr, A. et al. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121, 1127–1142 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tamura, K., Shimada, T., Kondo, M., Nishimura, M. & Hara-Nishimura, I. KATAMARI1/MURUS3 is a novel Golgi membrane protein that is required for endomembrane organization in Arabidopsis. Plant Cell 17, 1764–1776 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Szymanski, D. B. Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr. Opin. Plant Biol. 8, 103–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biol. 3, 259–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Bloch, D. et al. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol. Biol. Cell 16, 1913–1927 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Izumi, G. et al. Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J. Cell Biol. 166, 237–248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Madania, A. et al. The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521–3538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Ward, M. E., Wu, J. Y. & Rao, Y. Visualization of spatially and temporally regulated N-WASP activity during cytoskeletal reorganization in living cells. Proc. Natl Acad. Sci. USA 101, 970–974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lorenz, M., Yamaguchi, H., Wang, Y., Singer, R. H. & Condeelis, J. Imaging sites of N-wasp activity in lamellipodia and invadopodia of carcinoma cells. Curr. Biol. 14, 697–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Atomic structure of the actin: DNase I complex. Nature 347, 37–44 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986).

    Article  CAS  PubMed  Google Scholar 

  102. Sept, D. & McCammon, J. A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reutzel, R. et al. Actin crystal dynamics: structural implications for F-actin nucleation, polymerization, and branching mediated by the anti-parallel dimer. J. Struct. Biol. 146, 291–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Suetsugu, S., Miki, H., Yamaguchi, H., Obinata, T. & Takenawa, T. Enhancement of branching efficiency by the actin filament-binding activity of N-WASP/WAVE2. J. Cell Sci. 114, 4533–4542 (2001).

    CAS  PubMed  Google Scholar 

  106. Aguda, A. H., Burtnick, L. D. & Robinson, R. C. The state of the filament. EMBO Rep. 6, 220–226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rodal, A. A. et al. Conformational changes in the Arp2/3 complex leading to actin nucleation. Nature Struct. Mol. Biol. 12, 26–31 (2005).

    Article  CAS  Google Scholar 

  108. Tsujioka, M., Yoshida, K. & Inouye, K. Talin B is required for force transmission in morphogenesis of Dictyostelium. EMBO J. 23, 2216–2225 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blanchoin, L., Pollard, T. D. & Mullins, R. D. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr. Biol. 10, 1273–1282 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biol. 6, 420–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Brugnera, E. et al. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nature Cell Biol. 4, 574–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Qiu, J. L., Jilk, R., Marks, M. D. & B. Szymanski, D. The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14, 101–118 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dai, Z. & Pendergast, A. M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569–2582 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Shi, Y., Alin, K. & Goff, S. P. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev. 9, 2583–2597 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Westphal, R. S., Soderling, S. H., Alto, N. M., Langeberg, L. K. & Scott, J. D. Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J. 19, 4589–4600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Innocenti, M. et al. Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biol. 7, 969–976 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Hussey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Arp2

Arp3

BRICK1

WRP

TAIR

ARPC4

ARPC5

Glossary

PROTIST

A single-celled eukaryote.

BARBED END

An actin polymer has two ends; the barbed (+) end and the pointed (−) end. The barbed end has a higher affinity for monomers and grows at a faster rate.

FORMIN FAMILY

A family of multidomain scaffold proteins that are involved in actin-dependent morphogenetic events. They are conserved from plants to humans and are characterized by the presence of two conserved carboxy-terminal regions: the formin homology (FH) domains FH1 and FH2.

X-RAY FIBRE DIFFRACTION

The exposure of an ordered array of molecular fibres to an X-ray beam in order to obtain a diffraction pattern that, in turn, can be used to calculate a high-resolution molecular model of the fibre.

DISASSOCIATION EQUILIBRIUM CONSTANT (Kd)

Kd is calculated as the ratio of the dissociation and association rate constants of two molecules undergoing a reversible interaction. The unit of the disassociation constant is moles per litre. A low value for Kd represents a relatively strong association. Consequently, the calculated Kd between an actin monomer and another actin monomer is high, whilst the Kd between an actin monomer and an F-actin polymer is low. For F-actin of three or more subunits, Kd is equal to the critical concentration of actin polymerization.

RING CANALS

Cytoplasmic connections between D. melanogaster nurse cells and developing oocytes.

LAMELLIPODIA

Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments.

LEADING EDGE

The thin margin of a lamellipodium that spans the area of the cell from the plasma membrane to a depth of about 1 μm into the lamellipodium.

FILOPODIA

Thin, transient actin protrusions that extend out from the cell surface and are formed by the elongation of bundled actin filaments in the core.

CLATHRIN-COATED VESICLE (CCV).

Transport vesicles that bud with the help of a coat protein known as clathrin.

FORWARD GENETICS

A genetic analysis that proceeds from phenotype to genotype by positional cloning or candidate-gene analysis.

REVERSE GENETICS

Genetic analysis that proceeds from genotype to phenotype through gene-manipulation techniques.

PAVEMENT CELLS

Plant leaf epidermal cells that coordinate through a series of lobed extensions to produce a continuous interlocking surface.

SINGLE PARTICLE AVERAGING

The generation of a model of a macromolecule through the analysis of multiple transmission electron microscope images (often thousands).

RHO-FAMILY GTPASE

A Ras-related GTPase that is involved in controlling the polymerization of actin.

EFFECTOR

A protein or protein complex that binds the GTPase directly and in a GTP-dependent manner and is required for the downstream function determined by that GTPase.

GUANINE NUCLEOTIDE-EXCHANGE FACTOR (GEF)

A protein that facilitates the exchange of GDP (guanine diphosphate) for GTP (guanine triphosphate) in the nucleotide-binding pocket of a GTP-binding protein.

MONOCOTYLEDON

A plant that has a single cotyledon (seed leaf) as an embryo.

DICOTYLEDON

One of the two principal classes of flowering plant, dicots are characterized by two cotyledons (primitive leaves) in the embryonic plant. Tomatoes, maple trees and mustard are common dicots.

TIP-GROWING CELLS

Cells of plants and fungi that grow by depositing new cell wall and membrane material at a focused polar site (the tip).

BREFELDIN A

A drug that is thought to disrupt endocytotic processes by inhibiting GTPase exchange factors for ADP-ribosylation factor (ARF) GTPases. ARFs function in many processes that include Golgi COPI vesicle formation.

FLUID-PHASE ENDOCYTOSIS

Fluid-phase endocytosis is the nonspecific uptake of fluid at the cell membrane. This contrasts receptor-mediated endocytosis where a ligand-receptor interaction triggers active uptake.

LUCIFER YELLOW

A soluble fluorescent chemical used to observe fluid-phase endocytosis.

EXPRESSED SEQUENCE TAGS (ESTs).

Short DNA sequences (several hundred base pairs) that are produced by reverse transcription of mRNA into DNA. ESTs are cDNAs that consist of exons and the sequences that flank exons. The sequencing of ESTs allows rapid identification ('tagging') of genes and can expedite DNA-marker development in coding genes.

CONTIG

Refers to an overlapping set of DNA fragments, in this context the overlapping series of genomic clones that reconstitute the five A. thaliana chromosomes.

EPSIN HOMOLOGY DOMAIN

A family of protein–protein interaction domains that are frequently found in endocytic proteins.

CORTACTIN

An animal Arp2/3-complex-activating protein that is recruited to lamellipodia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeks, M., Hussey, P. Arp2/3 and SCAR: plants move to the fore. Nat Rev Mol Cell Biol 6, 954–964 (2005). https://doi.org/10.1038/nrm1765

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing