Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kinetochore capture and bi-orientation on the mitotic spindle

Key Points

  • To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes accurately to opposite poles during mitosis. For high-fidelity chromosome segregation, kinetochores must be captured properly on the mitotic spindle before anaphase onset.

  • Correct kinetochore capture by spindle microtubules is achieved in a stepwise manner. Kinetochores are initially captured by the lateral surface of a single microtubule that extends from either spindle pole. Once captured, kinetochores are transported poleward along the microtubule.

  • To assure correct kinetochore capture and transport, microtubules must efficiently locate unattached kinetochores and, after capture, the kinetochores must stabilize associated microtubules.

  • Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles (this is known as sister kinetochore bi-orientation or amphitelic attachment). To achieve this, mal-oriented kinetochore–spindle-pole connections must be removed, and bi-orientation must be selectively promoted.

  • We discuss how kinetochores are initially captured by microtubules and how sister kinetochores subsequently bi-orient on the mitotic spindle. Although we focus mainly on recent research progress in the budding yeast Saccharomyces cerevisiae, we will also discuss findings in other organisms in this context.

Abstract

Kinetochores are large protein complexes that are formed on chromosome regions known as centromeres. For high-fidelity chromosome segregation, kinetochores must be correctly captured on the mitotic spindle before anaphase onset. During prometaphase, kinetochores are initially captured by a single microtubule that extends from a spindle pole and are then transported poleward along the microtubule. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles — this is known as bi-orientation. Here we discuss the molecular mechanisms of these processes, by focusing on budding yeast and drawing comparisons with other organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetochore–microtubule interaction in prometaphase and metaphase.
Figure 2: Modes of kinetochore–microtubule interactions.
Figure 3: Kinetochore components in budding yeast.
Figure 4: A model for kinetochore capture by microtubules in budding yeast.
Figure 5: A model for sister kinetochore bi-orientation.

Similar content being viewed by others

References

  1. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    CAS  PubMed  Google Scholar 

  2. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    CAS  PubMed  Google Scholar 

  3. McIntosh, J. R., Grishchuk, E. L. & West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219 (2002).

    CAS  PubMed  Google Scholar 

  4. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).

    CAS  PubMed  Google Scholar 

  5. Merdes, A. & De Mey, J. The mechanism of kinetochore–spindle attachment and polewards movement analyzed in PtK2 cells at the prophase–prometaphase transition. Eur. J. Cell Biol. 53, 313–325 (1990).

    CAS  PubMed  Google Scholar 

  6. Hayden, J. H., Bowser, S. S. & Rieder, C. L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J. Cell Biol. 111, 1039–1045 (1990).

    CAS  PubMed  Google Scholar 

  7. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005). Visualization of kinetochore capture by individual microtubules in living yeast cells. Kinetochores are captured by the side of microtubules that extend from spindle poles and are subsequently transported along them.

    CAS  PubMed  Google Scholar 

  8. Hauf, S. & Watanabe, Y. Kinetochore orientation in mitosis and meiosis. Cell 119, 317–327 (2004).

    CAS  PubMed  Google Scholar 

  9. Tanaka, T. U. Chromosome bi-orientation on the mitotic spindle. Phil. Trans. R. Soc. Lond. B. 360, 581–589 (2005).

    CAS  Google Scholar 

  10. Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).

    CAS  PubMed  Google Scholar 

  11. Lew, D. J. & Burke, D. J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37, 251–282 (2003).

    CAS  PubMed  Google Scholar 

  12. Hegemann, J. H. & Fleig, U. N. The centromere of budding yeast. Bioessays 15, 451–560 (1993).

    CAS  PubMed  Google Scholar 

  13. McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function, and regulation of budding yeast kinetochores. Ann. Rev. Cell Dev. Biol. 19, 519–539 (2003).

    CAS  Google Scholar 

  14. Lechner, J. & Carbon, J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64, 717–725 (1991).

    CAS  PubMed  Google Scholar 

  15. Goh, P. Y. & Kilmartin, J. V. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121, 503–512 (1993).

    CAS  PubMed  Google Scholar 

  16. Sorger, P. K., Severin, F. F. & Hyman, A. A. Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J. Cell Biol. 127, 995–1008 (1994).

    CAS  PubMed  Google Scholar 

  17. Cheeseman, I. M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D. G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheeseman, I. M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheeseman, I. M. et al. Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    CAS  PubMed  Google Scholar 

  20. Janke, C., Ortiz, J., Tanaka, T. U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1–Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, M. H., He, X., Giddings, T. H. & Winey, M. Yeast Dam1p has a role at the kinetochore in assembly of the mitotic spindle. Proc. Natl Acad. Sci. USA 98, 13675–13680 (2001).

    CAS  PubMed  Google Scholar 

  22. Kang, J. et al. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J. Cell Biol. 155, 763–774 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–917 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ortiz, J., Stemmann, O., Rank, S. & Lechner, J. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13, 1140–1155 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wigge, P. A. & Kilmartin, J. V. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152, 349–360 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Janke, C. et al. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J. 20, 777–791 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Measday, V. et al. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev. 16, 101–113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nekrasov, V. S., Smith, M. A., Peak-Chew, S. & Kilmartin, J. V. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 4931–4946 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Westermann, S. et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163, 215–222 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pinsky, B. A., Tatsutani, S. Y., Collins, K. A. & Biggins, S. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev. Cell 5, 735–745 (2003).

    CAS  PubMed  Google Scholar 

  32. Scharfenberger, M. et al. Nsl1p is essential for the establishment of bipolarity and the localization of the Dam–Duo complex. EMBO J. 22, 6584–6597 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stoler, S., Keith, K. C., Curnick, K. E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).

    CAS  PubMed  Google Scholar 

  34. Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998).

    CAS  PubMed  Google Scholar 

  35. Crotti, L. B. & Basrai, M. A. Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae. EMBO J. 23, 1804–1814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharp, J. A., Franco, A. A., Osley, M. A. & Kaufman, P. D. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev. 16, 85–100 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).

    CAS  PubMed  Google Scholar 

  38. Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Meluh, P. B. & Koshland, D. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 11, 3401–312 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, C. S. & Botstein, D. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135, 677–691 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J. H., Kang, J. S. & Chan, C. S. Sli15 associates with the ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 145, 1381–1394 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore–microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    CAS  PubMed  Google Scholar 

  45. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell 108, 317–329 (2002).

    CAS  PubMed  Google Scholar 

  46. Wang, P. J. & Huffaker, T. C. Stu2p: A microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Severin, F., Habermann, B., Huffaker, T. & Hyman, T. Stu2 promotes mitotic spindle elongation in anaphase. J. Cell Biol. 153, 435–442 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, H. et al. Polyploids require Bik1 for kinetochore–microtubule attachment. J. Cell Biol. 155, 1173–1184 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kosco, K. A. et al. Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol. Biol. Cell 12, 2870–2880 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yin, H., You, L., Pasqualone, D., Kopski, K. M. & Huffaker, T. C. Stu1p is physically associated with β-tubulin and is required for structural integrity of the mitotic spindle. Mol. Biol. Cell 13, 1881–1892 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. van Breugel, M., Drechsel, D. & Hyman, A. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J. Cell Biol. 161, 359–369 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pearson, C. G., Maddox, P. S., Zarzar, T. R., Salmon, E. D. & Bloom, K. Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. Mol. Biol. Cell 14, 4181–4195 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carvalho, P., Gupta, M. L. Jr., Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).

    CAS  PubMed  Google Scholar 

  55. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    CAS  PubMed  Google Scholar 

  56. Adams, I. R. & Kilmartin, J. V. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol. 10, 329–335 (2000).

    CAS  PubMed  Google Scholar 

  57. Winey, M. & O'Toole, E. T. The spindle cycle in budding yeast. Nature Cell Biol. 3, E23–E27 (2001).

    CAS  PubMed  Google Scholar 

  58. Guacci, V., Hogan, E. & Koshland, D. Centromere position in budding yeast: evidence for anaphase A. Mol. Biol. Cell 8, 957–972 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin, Q. W., Fuchs, J. & Loidl, J. Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell Sci. 113, 1903–1912 (2000).

    CAS  PubMed  Google Scholar 

  60. Pearson, C. G. et al. Stable kinetochore–microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962–1967 (2004).

    CAS  PubMed  Google Scholar 

  61. Amor, D. J., Kalitsis, P., Sumer, H. & Choo, K. H. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol. 14, 359–368 (2004).

    CAS  PubMed  Google Scholar 

  62. McEwen, B. F., Hsieh, C. E., Mattheyses, A. L. & Rieder, C. L. A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma 107, 366–375 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. He, D. & Brinkley, B. R. Structure and dynamic organization of centromeres/prekinetochores in the nucleus of mammalian cells. J. Cell Sci. 109, 2693–2704 (1996).

    CAS  PubMed  Google Scholar 

  64. Alberts, B. et al. in Molecular Biology of the Cell 1027–1064 (Garland Science, 2002).

    Google Scholar 

  65. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

    CAS  PubMed  Google Scholar 

  66. O'Toole, E. T., Winey, M. & McIntosh, J. R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10, 2017–2031 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Goshima, G. & Yanagida, M. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633 (2000).

    CAS  PubMed  Google Scholar 

  68. He, X., Asthana, S. & Sorger, P. K. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775 (2000).

    CAS  PubMed  Google Scholar 

  69. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000).

    CAS  PubMed  Google Scholar 

  70. Pearson, C. G., Maddox, P. S., Salmon, E. D. & Bloom, K. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol. 152, 1255–1266 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pickett-Heaps, J. D. Cell division in diatoms. Int. Rev. Cytol. 128, 63–107 (1991).

    Google Scholar 

  72. Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T. U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93–97 (2004). This paper addressed whether tension applied on two kinetochores is sufficient for promoting their bi-orientation by studying the behaviour of two kinetochores on unreplicated dicentric chromosomes in budding yeast. Their efficient bi-orientation indicates that this is the case.

    CAS  PubMed  Google Scholar 

  73. Carazo-Salas, R. E. & Karsenti, E. Long-range communication between chromatin and microtubules in Xenopus egg extracts. Curr. Biol. 13, 1728–1733 (2003).

    CAS  PubMed  Google Scholar 

  74. Caudron, M., Bunt, G., Bastiaens, P. & Karsenti, E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309, 1373–1376 (2005).

    CAS  PubMed  Google Scholar 

  75. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. & Karsenti, E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nature Cell Biol. 3, 228–234 (2001).

    CAS  PubMed  Google Scholar 

  76. Wilde, A. et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nature Cell Biol. 3, 221–227 (2001).

    CAS  PubMed  Google Scholar 

  77. Wollman, R. et al. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005).

    CAS  PubMed  Google Scholar 

  78. Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A. & Kapoor, T. M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Maiato, H., Rieder, C. L. & Khodjakov, A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167, 831–840 (2004). Kinetochore-derived microtubules had previously been reported in vertebrate cells that were recovering from treatment with microtubule poison. References 78 and 79 show that microtubules are generated from kinetochores even in unperturbed cell cycles of vertebrate and fly cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hildebrandt, E. R. & Hoyt, M. A. Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1496, 99–116 (2000).

    CAS  PubMed  Google Scholar 

  81. Lawrence, C. J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Meluh, P. B. & Rose, M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029–1041 (1990).

    CAS  PubMed  Google Scholar 

  83. Maddox, P. S., Stemple, J. K., Satterwhite, L., Salmon, E. D. & Bloom, K. The minus end-directed motor Kar3 is required for coupling dynamic microtubule plus ends to the cortical shmoo tip in budding yeast. Curr. Biol. 13, 1423–1428 (2003).

    CAS  PubMed  Google Scholar 

  84. Middleton, K. & Carbon, J. KAR3-encoded kinesin is a minus-end-directed motor that functions with centromere binding proteins (CBF3) on an in vitro yeast kinetochore. Proc. Natl Acad. Sci. USA 91, 7212–7216 (1994).

    CAS  PubMed  Google Scholar 

  85. Alexander, S. P. & Rieder, C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J. Cell Biol. 113, 805–815 (1991).

    CAS  PubMed  Google Scholar 

  86. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Biol. 105, 1273–1282 (1987).

    CAS  PubMed  Google Scholar 

  87. King, J. M., Hays, T. S. & Nicklas, R. B. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J. Cell Biol. 151, 739–748 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Higuchi, H. & Endow, S. A. Directionality and processivity of molecular motors. Curr. Opin. Cell Biol. 14, 50–57 (2002).

    CAS  PubMed  Google Scholar 

  89. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990).

    CAS  PubMed  Google Scholar 

  90. Endow, S. A. & Komma, D. J. Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd–GFP fusion proteins. J. Cell Sci. 109, 2429–2442 (1996).

    CAS  PubMed  Google Scholar 

  91. Heath, I. B. Behavior of kinetochores during mitosis in the fungus Saprolegnia ferax. J. Cell Biol. 84, 531–546 (1980).

    CAS  PubMed  Google Scholar 

  92. Ding, R., McDonald, K. L. & McIntosh, J. R. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120, 141–151 (1993).

    CAS  PubMed  Google Scholar 

  93. Maiato, H. et al. MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J. Cell Biol. 157, 749–760 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Meraldi, P. & Sorger, P. K. A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J. 24, 1621–1633 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ostergren, G. The mechanisms of co-orientation in bivalents and mutivalents. Hereditas 37, 85–156 (1951).

    Google Scholar 

  96. Page, S. L. & Hawley, R. S. Chromosome choreography: the meiotic ballet. Science 301, 785–789 (2003).

    CAS  PubMed  Google Scholar 

  97. Nicklas, R. B. & Koch, C. A. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol. 43, 40–50 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    CAS  PubMed  Google Scholar 

  99. Nicklas, R. B. Mitosis. Adv. Cell Biol. 2, 225–297 (1971).

    CAS  PubMed  Google Scholar 

  100. Ault, J. G. & Rieder, C. L. Chromosome mal-orientation and reorientation during mitosis. Cell Motil. Cytoskeleton 22, 155–159 (1992).

    CAS  PubMed  Google Scholar 

  101. Cimini, D., Moree, B., Canman, J. C. & Salmon, E. D. Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J. Cell Sci. 116, 4213–4225 (2003).

    CAS  PubMed  Google Scholar 

  102. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003). Reference 102, together with reference 118, shows that Aurora B is required to resolve syntelic attachment and to facilitate amphitelic attachment in vertebrate cells. So, from yeast to vertebrate cells, Ipl1/Aurora-B kinases share the conserved function of facilitating bi-orientation.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Khodjakov, A., Cole, R. W., McEwen, B. F., Buttle, K. F. & Rieder, C. L. Chromosome fragments possessing only one kinetochore can congress to the spindle equator. J. Cell Biol. 136, 229–240 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wise, D. A. & Brinkley, B. R. Mitosis in cells with unreplicated genomes (MUGs): spindle assembly and behavior of centromere fragments. Cell Motil. Cytoskeleton 36, 291–302 (1997).

    CAS  PubMed  Google Scholar 

  105. Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ono, T., Fang, Y., Spector, D. L. & Hirano, T. Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 15, 3296–3308 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bloom, K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell 73, 621–624 (1993).

    CAS  PubMed  Google Scholar 

  108. Salmon, E. D., Cimini, D., Cameron, L. A. & DeLuca, J. G. Merotelic kinetochores in mammalian tissue cells. Phil. Trans. R. Soc. Lond. B 360, 553–568 (2005).

    CAS  Google Scholar 

  109. Sonoda, E. et al. Scc1/Rad21/Mcd1 Is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).

    CAS  PubMed  Google Scholar 

  110. Hoque, M. T. & Ishikawa, F. Cohesin defects lead to premature sister chromatid separation, kinetochore dysfunction, and spindle-assembly checkpoint activation. J. Biol. Chem. 277, 42306–42314 (2002).

    CAS  PubMed  Google Scholar 

  111. Toyoda, Y. et al. Requirement of chromatid cohesion proteins rad21/scc1 and mis4/scc2 for normal spindle–kinetochore interaction in fission yeast. Curr. Biol. 12, 347–358 (2002).

    CAS  PubMed  Google Scholar 

  112. Vass, S. et al. Depletion of drad21/scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol. 13, 208–2182 (2003).

    CAS  PubMed  Google Scholar 

  113. Vagnarelli, P. et al. Analysis of Scc1-deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores. EMBO Rep. 5, 167–171 (2004). Reference 113 (in chicken DT40 cells) and reference 72 (in budding yeast) show that, in cohesin-deficient cells, an alternative means of connection between sister chromatids restores bi-orientation. So, cohesin is likely to facilitate bi-orientation by generating tension across sister kinetochores when bi-orientation is established.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Adams, R. R. et al. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol. 10, 1075–1078 (2000).

    CAS  PubMed  Google Scholar 

  115. Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol. 10, 1172–1181 (2000).

    CAS  PubMed  Google Scholar 

  116. Carmena, M. & Earnshaw, W. C. The cellular geography of aurora kinases. Nature Rev. Mol. Cell Biol. 4, 842–854 (2003).

    CAS  Google Scholar 

  117. Andrews, P. D., Knatko, E., Moore, W. J. & Swedlow, J. R. Mitotic mechanics: the auroras come into view. Curr. Opin. Cell Biol. 15, 672–683 (2003).

    CAS  PubMed  Google Scholar 

  118. Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome–spindle attachments during cell division. Nature Cell Biol. 6, 232–237 (2004).

    CAS  PubMed  Google Scholar 

  119. Petersen, J., Paris, J., Willer, M., Philippe, M. & Hagan, I. M. The S. pombe aurora-related kinase Ark1 associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. J. Cell Sci. 114, 4371–4384 (2001).

    CAS  PubMed  Google Scholar 

  120. Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol. 153, 865–880 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kaitna, S., Pasierbek, P., Jantsch, M., Loidl, J. & Glotzer, M. The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr. Biol. 12, 798–812 (2002).

    CAS  PubMed  Google Scholar 

  124. Leverson, J. D., Huang, H. K., Forsburg, S. L. & Hunter, T. The Schizosaccharomyces pombe aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis. Mol. Biol. Cell 13, 1132–1143 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Pereira, G. & Schiebel, E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003).

    CAS  PubMed  Google Scholar 

  126. Parry, D. H., Hickson, G. R. & O'Farrell, P. H. Cyclin B destruction triggers changes in kinetochore behavior essential for successful anaphase. Curr. Biol. 13, 647–653 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kallio, M. J., McCleland, M. L., Stukenberg, P. T. & Gorbsky, G. J. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol. 12, 900–905 (2002).

    CAS  PubMed  Google Scholar 

  128. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Morrow, C. J. et al. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J. Cell Sci. 118, 3639–3652 (2005).

    CAS  PubMed  Google Scholar 

  130. Francisco, L., Wang, W. & Chan, C. S. Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol. Cell Biol. 14, 4731–4740 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sassoon, I. et al. Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev. 13, 545–555 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    CAS  PubMed  Google Scholar 

  133. Murnion, M. E. et al. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J. Biol. Chem. 276, 26656–2665 (2001).

    CAS  PubMed  Google Scholar 

  134. Bloecher, A. & Tatchell, K. Defects in Saccharomyces cerevisiae protein phosphatase type I activate the spindle/kinetochore checkpoint. Genes Dev. 13, 517–522 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Buvelot, S., Tatsutani, S. Y., Vermaak, D. & Biggins, S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J. Cell Biol. 160, 329–339 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Shang, C. et al. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol. Biol. Cell 14, 3342–3355 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).

    CAS  Google Scholar 

  138. Westermann, S. et al. Formation of a dynamic kinetochore–microtubule interface through assembly of the Dam1 Ring complex. Mol. Cell 17, 277–290 (2005). References 137 and 138 show that the kinetochore Dam1 complexes oligomerize and form a ring that encircles a microtubule in vitro . This ring is mobile along the microtubule. This property of the Dam1 complex might allow kinetochores to remain associated with the plus ends of dynamic microtubules.

    CAS  PubMed  Google Scholar 

  139. Sanchez-Perez, I. et al. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J. 24, 2931–2943 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, X., McLeod, I., Anderson, S., Yates, J. R. & He, X. Molecular analysis of kinetochore architecture in fission yeast. EMBO J. 24, 2919–2930 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zeitlin, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell Biol. 155, 1147–1157 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kunitoku, N. et al. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell 5, 853–864 (2003).

    CAS  PubMed  Google Scholar 

  143. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    CAS  PubMed  Google Scholar 

  144. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    CAS  PubMed  Google Scholar 

  145. Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895–2906 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sampath, S. C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118, 187–202 (2004).

    CAS  PubMed  Google Scholar 

  147. Indjeian, V. B., Stern, B. M. & Murray, A. W. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307, 130–133 (2005).

    CAS  PubMed  Google Scholar 

  148. Trautmann, S., Rajagopalan, S. & McCollum, D. The S. pombe Cdc14-like phosphatase Clp1p regulates chromosome biorientation and interacts with Aurora kinase. Dev. Cell 7, 755–762 (2004).

    CAS  PubMed  Google Scholar 

  149. Lampson, M. A. & Kapoor, T. M. The human mitotic checkpoint protein BubR1 regulates chromosome–spindle attachments. Nature Cell Biol. 7, 93–98 (2005).

    CAS  PubMed  Google Scholar 

  150. Ohkura, H., Garcia, M. A. & Toda, T. Dis1/TOG universal microtubule adaptors — one MAP for all? J. Cell Sci. 114, 3805–3812 (2001).

    CAS  PubMed  Google Scholar 

  151. Nakaseko, Y., Goshima, G., Morishita, J. & Yanagida, M. M phase-specific kinetochore proteins in fission yeast: microtubule-associating Dis1 and Mtc1 display rapid separation and segregation during anaphase. Curr. Biol. 11, 537–549 (2001).

    CAS  PubMed  Google Scholar 

  152. Kinoshita, K., Habermann, B. & Hyman, A. A. XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol. 12, 267–273 (2002).

    CAS  PubMed  Google Scholar 

  153. Garcia, M. A., Koonrugsa, N. & Toda, T. Spindle–kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast. EMBO J. 21, 6015–6024 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Shirasu-Hiza, M., Coughlin, P. & Mitchison, T. Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification. J. Cell Biol. 161, 349–358 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Srayko, M., Quintin, S., Schwager, A. & Hyman, A. A. Caenorhabditis elegans TAC-1 and ZYG-9 form a complex that is essential for long astral and spindle microtubules. Curr. Biol. 13, 1506–1511 (2003).

    CAS  PubMed  Google Scholar 

  156. Brittle, A. L. & Ohkura, H. Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J. 24, 1387–1396 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    CAS  PubMed  Google Scholar 

  158. Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994).

    CAS  PubMed  Google Scholar 

  159. Skibbens, R. V., Rieder, C. L. & Salmon, E. D. Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. J. Cell Sci. 108, 2537–2548 (1995).

    CAS  PubMed  Google Scholar 

  160. Skibbens, R. V. & Salmon, E. D. Micromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement. Exp. Cell Res. 235, 314–324 (1997).

    CAS  PubMed  Google Scholar 

  161. Maiato, H., Deluca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore-microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    CAS  PubMed  Google Scholar 

  162. Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003).

    CAS  PubMed  Google Scholar 

  163. Rogers, G. C., Rogers, S. L. & Sharp, D. J. Spindle microtubules in flux. J. Cell Sci. 118, 1105–1116 (2005).

    CAS  PubMed  Google Scholar 

  164. Maiato, H., Khodjakov, A. & Rieder, C. L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nature Cell Biol. 7, 42–47 (2005).

    CAS  PubMed  Google Scholar 

  165. Cheeseman, I. M., Macleod, I., Yates, J. R. 3rd, Oegema, K. & Desai, A. The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation. Curr. Biol. 15, 771–777 (2005).

    CAS  PubMed  Google Scholar 

  166. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995).

    CAS  PubMed  Google Scholar 

  167. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    CAS  PubMed  Google Scholar 

  168. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wordeman, L. Microtubule-depolymerizing kinesins. Curr. Opin. Cell Biol. 17, 82–88 (2005).

    CAS  PubMed  Google Scholar 

  170. Gardner, M. K. et al. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16, 3764–3775 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745. (2001).

    CAS  PubMed  Google Scholar 

  172. Uhlmann, F. Chromosome cohesion and separation: from men and molecules. Curr. Biol. 13, R104–R114 (2003).

    CAS  PubMed  Google Scholar 

  173. Nasmyth, K. & Haering, C. H. The structure and function of smc and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).

    CAS  PubMed  Google Scholar 

  174. Dobles, M., Liberal, V., Scott, M. L., Benezra, R. & Sorger, P. K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645 (2000).

    CAS  PubMed  Google Scholar 

  175. Warren, C. D. et al. Distinct chromosome segregation roles for spindle checkpoint proteins. Mol. Biol. Cell 13, 3029–3041 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Guacci, V., Hogan, E. & Koshland, D. Chromosome condensation and sister chromatid pairing in budding yeast. J. Cell Biol. 125, 517–530 (1994).

    CAS  PubMed  Google Scholar 

  177. McCarroll, R. M. & Fangman, W. L. Time of replication of yeast centromeres and telomeres. Cell 54, 505–513 (1988).

    CAS  PubMed  Google Scholar 

  178. Lim, H. H., Goh, P. Y. & Surana, U. Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28. Mol. Cell. Biol. 16, 6385–6397 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Pereira, G., Tanaka, T. U., Nasmyth, K. & Schiebel, E. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. EMBO J. 20, 6359–6370 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Corbett, A. H. & Silver, P. A. Nucleocytoplasmic transport of macromolecules. Microbiol. Mol. Biol. Rev. 61, 193–211 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Quimby, B. B. & Dasso, M. The small GTPase Ran: interpreting the signs. Curr. Opin. Cell Biol. 15, 338–344 (2003).

    CAS  PubMed  Google Scholar 

  182. Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Ouspenski, II. A RanBP1 mutation which does not visibly affect nuclear import may reveal additional functions of the ran GTPase system. Exp. Cell Res. 244, 171–183 (1998).

    CAS  PubMed  Google Scholar 

  184. Salus, S. S., Demeter, J. & Sazer, S. The Ran GTPase system in fission yeast affects microtubules and cytokinesis in cells that are competent for nucleocytoplasmic protein transport. Mol. Cell Biol. 22, 8491–8505 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Joseph, J., Tan, S. H., Karpova, T. S., McNally, J. G. & Dasso, M. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol. 156, 595–602 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Rose, A. & Meier, I. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proc. Natl Acad. Sci. USA 98, 15377–15382 (2001).

    CAS  PubMed  Google Scholar 

  187. Hopper, A. K., Traglia, H. M. & Dunst, R. W. The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J. Cell Biol. 111, 309–321 (1990).

    CAS  PubMed  Google Scholar 

  188. Feng, W., Benko, A. L., Lee, J. H., Stanford, D. R. & Hopper, A. K. Antagonistic effects of NES and NLS motifs determine S. cerevisiae Rna1p subcellular distribution. J. Cell Sci. 112, 339–47 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Mukae, H. Dewar, M. van Breugel, E. K. James, A. R. Prescott, C. Antony, K. Nasmyth, N. Rachidi, C. Janke, G. Pereira, M. Galova and E. Schiebel for collaboration. Work in the authors' laboratories was supported by The Wellcome Trust, Cancer Research UK and The EMBO Young Investigator Program. We apologize to our colleagues whose work we were unable to mention in this review due to space limitations. We encourage readers to refer to the cited work using organisms other than S. cerevisiae, many of which we could not describe in detail in this review for the same reason.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki U. Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Saccharomyces cerevisiae Database

Bik1

Bim1

Cac1

Cse4

Ctf19

Dam1

Glc7

Hir1

Ipl1

Kar3

Kip1

Kip2

Kip3

Mif2

Mtw1

Ndc80

Scc1

Sli15

Smy1

Spt4

Stu1

Stu2

FURTHER INFORMATION

Proteome database (registration required for access)

Kinesin homepage

School of Life Sciences, University of Dundee

Tomoyuki Tanaka's laboratory

Michael Stark's laboratory

Glossary

ANEUPLOIDY

A chromosome complement that is not a simple multiple of the haploid set.

MITOTIC SPINDLE

An intracellular apparatus that is normally made of two spindle poles, microtubules and microtubule-associated proteins. Microtubules in the mitotic spindle connect a spindle pole with the other spindle pole, chromosomes and the cell cortex. The mitotic spindle has central roles in chromosome segregation to daughter cells during cell division.

SISTER KINETOCHORE

Kinetochores are multiprotein complexes that assemble on centromeric DNA and mediate the attachment and movement of chromosomes along the microtubules of the mitotic spindle. Sister kinetochores are a pair of kinetochores that are assembled on centromeres of sister chromatids created by chromosome duplication.

SPINDLE CHECKPOINT

A surveillance mechanism that operates in mitosis to ensure that all chromosomes are correctly attached to the spindle microtubules. The spindle checkpoint senses failure in this process and delays activation of the protease separase, which cleaves a cohesin component, thereby delaying anaphase onset.

ORTHOLOGUE

A gene or a protein that belongs to different species and that has a similar nucleic-acid or amino-acid sequence, respectively.

MICROTUBULE-ORGANIZING CENTRE

(MTOC). An intracellular apparatus, such as a centrosome (metazoan) or a spindle pole body (yeast), from which microtubules grow.

DIATOMS

Single-cell algae with cell walls of silica.

KINESIN AND DYNEIN

Two different families of motor proteins. Both use the energy of ATP hydrolysis to move along a microtubule.

CHIASMATA

X-shaped connection that is formed by homologous recombination between paired homologous chromosomes during the first meiotic division.

MINICHROMOSOME

A small circular or linear artificial chromosome that has a centromere and DNA replication origin(s) (and telomeres at both ends, in the case of linear minichromosomes).

COHESIN

A multi-protein complex consisting of Smc1, Smc3, Scc1 (also known as Mcd1 or Rad21) and Scc3 (also known as Psc3 or SA1/2). This term is also used as a generic name for cohesin components. The cohesin complex is required for the establishment and maintenance of a physical link between sister chromatids.

AURORA KINASE

Member of a family of serine/threonine protein kinases that have many functions during mitosis and meiosis. Budding and fission yeasts encode a single Aurora kinase, whereas metazoan cells have two or three.

METAPHASE PLATE

Imaginary plane that lies midway between the spindle poles, perpendicular to the spindle axis. Chromosomes are positioned on this plate during metaphase in metazoan cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Stark, M. & Tanaka, K. Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 6, 929–942 (2005). https://doi.org/10.1038/nrm1764

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing