Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Radical medicine: treating ageing to cure disease

Abstract

The incidence of many diseases rises sharply with age. Although clearly separable, ageing and certain age-related diseases might share common mechanisms. Cellular metabolism and subsequent generation of reactive oxygen species might contribute both to the rate at which we age and to our susceptibility to numerous chronic diseases, therefore therapies that directly target the ageing process might provide new ways to treat human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disease-specific death rates as a function of age.
Figure 2: Potential role for reactive oxygen species in the pathogenesis of diseases involving protein aggregation.
Figure 3: A role for reactive oxygen species in cancer biology.
Figure 4: A model for mitochondrial oxidants.

Similar content being viewed by others

References

  1. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Bossy-Wetzel, E., Schwarzenbacher, R. & Lipton, S. A. Molecular pathways to neurodegeneration. Nature Med. 10, S2–S9 (2004).

    Article  PubMed  Google Scholar 

  3. Andersen, J. K. Oxidative stress in neurodegeneration: cause or consequence? Nature Med. 10, S18–S25 (2004).

    PubMed  Google Scholar 

  4. Dawson, T. M. & Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, H. J., Shin, S. Y., Choi, C., Lee, Y. H. & Lee, S. J. Formation and removal of α-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277, 5411–5417 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hsu, L. J. et al. α-Synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 157, 401–410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palacino, J. J. et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279, 18614–18622 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Martinat, C. et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary parkinsonism. PLoS Biol. 2, e327 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Lustbader, J. W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science 304, 448–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Reisberg, B. et al. Memantine in moderate-to-severe Alzheimer's disease. N. Engl. J. Med. 348, 1333–1341 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Nystrom, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 1311–1317 (2005).

  16. Botella, J. A. et al. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration. Curr. Biol. 14, 782–786 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Conconi, M., Szweda, L. I., Levine, R. L., Stadtman, E. R. & Friguet, B. Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch. Biochem. Biophys. 331, 232–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Grune, T., Jung, T., Merker, K. & Davies, K. J. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 2519–2530 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Keller, J. N. et al. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int. J. Biochem. Cell Biol. 36, 2376–2391 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Bota, D. A. & Davies, K. J. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nature Cell. Biol. 4, 674–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Madamanchi, N. R., Vendrov, A. & Runge, M. S. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 25, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nature Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  Google Scholar 

  24. Hsich, E. et al. Vascular effects following homozygous disruption of p47(phox): an essential component of NADPH oxidase. Circulation 101, 1234–1236 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Barry-Lane, P. A. et al. p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. J. Clin. Invest. 108, 1513–1522 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ballinger, S. W. et al. Mitochondrial integrity and function in atherogenesis. Circulation 106, 544–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira, H. C. et al. Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria. FASEB J. 19, 278–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, F. H. et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306, 1190–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wisloff, U. et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307, 418–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Storz, P. Reactive oxygen species in tumor progression. Front Biosci. 10, 1881–1896 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Neumann, C. A. et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561–565 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).

    CAS  PubMed  Google Scholar 

  35. Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Woo, R. A. & Poon, R. Y. Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev. 18, 1317–1330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Irani, K. et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275, 1649–1652 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936–7940 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).

    CAS  PubMed  Google Scholar 

  42. Wu, C., Miloslavskaya, I., Demontis, S., Maestro, R. & Galaktionov, K. Regulation of cellular response to oncogenic and oxidative stress by seladin-1. Nature 432, 640–645 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Greeve, I. et al. The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer's disease-associated neurodegeneration and oxidative stress. J. Neurosci. 20, 7345–7352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Arbiser, J. L. et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl Acad. Sci. USA 99, 715–720 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nelson, K. K. & Melendez, J. A. Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 37, 768–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Shi, T., Wang, F., Stieren, E. & Tong, Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560–13567 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet. 37, 349–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Pervaiz, S. Resveratrol: from grapevines to mammalian biology. FASEB J. 17, 1975–1985 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450–2452 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Trinei, M. et al. A p53–p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21, 3872–3878 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Napoli, C. et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc. Natl Acad. Sci. USA 100, 2112–2116 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Francia, P. et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110, 2889–2895 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Rev. Mol. Cell Biol. 6, 298–305 (2005).

    Article  CAS  Google Scholar 

  63. McCay, C. M., Crowell, M. F. & Maynard, L. A. The effects of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10, 63–79 (1935).

    Article  CAS  Google Scholar 

  64. Rous, P. The influence of diet on transplanted and spontaneous mouse tumors. J. Exp. Med. 20, 433–451 (1914).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Michels, K. B. & Ekbom, A. Caloric restriction and incidence of breast cancer. JAMA 291, 1226–1230 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Fontana, L., Meyer, T. E., Klein, S. & Holloszy, J. O. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc. Natl Acad. Sci. USA 101, 6659–6663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    CAS  PubMed  Google Scholar 

  69. Hill, J. M. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    Article  PubMed  Google Scholar 

  70. Saretzki, G., Armstrong, L., Leake, A., Lako, M. & von Zglinicki, T. Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22, 962–971 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Csete, M. et al. Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J. Cell. Physiol. 189, 189–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Limoli, C. L. et al. Cell-density-dependent regulation of neural precursor cell function. Proc. Natl Acad. Sci. USA 101, 16052–16057 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to members of my laboratory for useful suggestions, in particular, to I. Rovira for help with this manuscript. This work was supported by intramural National Institutes of Health funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Sod2

OMIM

ALS

Alzheimer's disease

Parkinson's disease

Swiss-Prot

α-synuclein

APP

ATM

JunD

parkin

peroxiredoxin I

PINK1

Ras

seladin-1

SIRT1

SIRT3

SOD1

FURTHER INFORMATION

National Center for Health Statistics (US)

Toren Finkel's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkel, T. Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 6, 971–976 (2005). https://doi.org/10.1038/nrm1763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing