Innovation | Published:

Photoactivatable fluorescent proteins

Nature Reviews Molecular Cell Biologyvolume 6pages885890 (2005) | Download Citation

Subjects

Abstract

The fluorescence characteristics of photoactivatable proteins can be controlled by irradiating them with light of a specific wavelength, intensity and duration. This provides unique possibilities for the optical labelling and tracking of living cells, organelles and intracellular molecules in a spatio-temporal manner. Here, we discuss the properties of the available photoactivatable fluorescent proteins and their potential applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

  2. 2

    Verkhusha, V. V. & Lukyanov, K. A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnol. 22, 289–296 (2004).

  3. 3

    Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

  4. 4

    Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. & Leibler, S. Photoactivation turns green fluorescent protein red. Curr. Biol. 7, 809–812 (1997).

  5. 5

    Sawin, K. E. & Nurse, P. Photoactivation of green fluorescent protein. Curr. Biol. 7, R606–R607 (1997).

  6. 6

    Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203 (1999).

  7. 7

    Jakobs, S., Schauss, A. C. & Hell, S. W. Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen. FEBS Lett. 554, 194–200 (2003).

  8. 8

    Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 13, 1873–1877 (2002).

  9. 9

    Chudakov, D. M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nature Biotechnol. 22, 1435–1439 (2004).

  10. 10

    Verkhusha, V. V. & Sorkin, A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12, 279–285 (2005).

  11. 11

    Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

  12. 12

    Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl Acad. Sci. USA 101, 15905–15910 (2004).

  13. 13

    Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002).

  14. 14

    Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999).

  15. 15

    Chattoraj, M., King, B. A., Bublitz, G. U. & Boxer, S. G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl Acad. Sci. USA 93, 8362–8367 (1996).

  16. 16

    Niwa, H. et al. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl Acad. Sci. USA 93, 13617–13622 (1996).

  17. 17

    Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl Acad. Sci. USA 94, 2306–2311 (1997).

  18. 18

    Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nature Biotechnol. 14, 1252–1256 (1996).

  19. 19

    Van Thor, J. J., Gensch, T., Hellingwerf, K. J. & Johnson, L. N. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nature Struct. Biol. 9, 37–41 (2002).

  20. 20

    Bell, A. F., Stoner-Ma, D., Wachter, R. M. & Tonge, P. J. Light-driven decarboxylation of wild-type green fluorescent protein. J. Am. Chem. Soc. 125, 6919–6926 (2003).

  21. 21

    Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002).

  22. 22

    Labas, Y. A. et al. Diversity and evolution of the green fluorescent protein family. Proc. Natl Acad. Sci. USA 99, 4256–4261 (2002).

  23. 23

    Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. & Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6, 233–238 (2005).

  24. 24

    Mizuno, H. et al. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell 12, 1051–1058 (2003).

  25. 25

    Chudakov, D. M. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnol. 21, 191–194 (2003).

  26. 26

    Chudakov, D. M., Feofanov, A. V., Mudrik, N. N., Lukyanov, S. & Lukyanov, K. A. Chromophore environment provides clue to 'kindling fluorescent protein' riddle. J. Biol. Chem. 278, 7215–7219 (2003).

  27. 27

    Lukyanov, K. A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).

  28. 28

    Quillin, M. L. et al. Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38-A resolution. Biochemistry 44, 5774–5787 (2005).

  29. 29

    Wilmann, P. G., Petersen, J., Devenish, R. J., Prescott, M. & Rossjohn, J. Variations on the GFP chromophore: a polypeptide fragmentation within the chromophore revealed in the 2.1-A crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata. J. Biol. Chem. 280, 2401–2404 (2005).

  30. 30

    Tulu, U. S., Rusan, N. M. & Wadsworth, P. Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells. Curr. Biol. 13, 1894–1899 (2003).

  31. 31

    Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

  32. 32

    Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

  33. 33

    Onfelt, B., Nedvetzki, S., Yanagi, K. & Davis, D. M. Cutting edge: membrane nanotubes connect immune cells. J. Immunol. 173, 1511–1513 (2004).

  34. 34

    Lakowicz, J. R. in Principles of Fluorescence Spectroscopy. 291–318 (Kluwer Academic/Plenum New York, Boston, Dorbrech, London, Moscow, 1999).

  35. 35

    Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotechnol. 21, 1387–1395 (2003).

  36. 36

    Galperin, E., Verkhusha, V. V. & Sorkin, A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nature Methods 1, 209–217 (2004).

  37. 37

    Giordano, L., Jovin, T. M., Irie, M. & Jares-Erijman, E. A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 124, 7481–7489 (2002).

  38. 38

    Song, L., Jares-Erijmana, E. A. & Jovin, T. M. A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. 150, 177–185 (2002).

  39. 39

    X. Rizzo, M. A., Springer, G. H., Granada, B. & Piston, D. W. An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnol. 22, 445–449 (2004).

  40. 40

    Deng, L. et al. Structural basis for the emission of violet bioluminescence from a W92F obelin mutant. FEBS Lett. 506, 281–285 (2001).

  41. 41

    Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnol. 21, 1347–1355 (2003).

  42. 42

    Hell, S. W., Dyba, M. & Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14, 599–609 (2004).

  43. 43

    Zimmermann, T., Rietdorf, J. & Pepperkok, R. Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003).

  44. 44

    Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

  45. 45

    Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl Acad. Sci. USA 101, 16745–16749 (2004).

  46. 46

    Shagin, D. A. et al. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841–850 (2004).

  47. 47

    Billinton, N. & Knight, A. W. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 291, 175–197 (2001).

  48. 48

    Griesbeck, O. Fluorescent proteins as sensors for cellular functions. Curr. Opin. Neurobiol. 14, 636–641 (2004).

  49. 49

    Post, J. N., Lidke, K. A., Rieger, B. & Arndt-Jovin, D. J. One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett. 579, 325–330 (2005).

  50. 50

    Lee, W. L., Kim, M. K., Schreiber, A. D. & Grinstein, S. Role of ubiquitin and proteasomes in phagosome maturation. Mol. Biol. Cell 16, 2077–2090 (2005).

  51. 51

    Karbowski, M. et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164, 493–499 (2004).

  52. 52

    Arimura, S., Yamamoto, J., Aida, G. P., Nakazono, M. & Tsutsumi, N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc. Natl Acad. Sci. USA 101, 7805–7808 (2004).

  53. 53

    Deryusheva, S. & Gall, J. G. Dynamics of coilin in Cajal bodies of the Xenopus germinal vesicle. Proc. Natl Acad. Sci. USA 101, 4810–4814 (2004).

  54. 54

    Rusan, N. M. & Wadsworth, P. Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase. J. Cell Biol. 168, 21–28 (2005).

  55. 55

    Stanek, D. & Neugebauer, K. M. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J. Cell Biol. 166, 1015–1025 (2004).

Download references

Acknowledgements

The authors are supported by the European Commission Framework Program 6 and the Russian Academy of Sciences for the programme in Molecular and Cell Biology (K.A.L., D.M.C. and S.L.), and the National Institute of General Medical Sciences and the National Institute on Drug Abuse (V.V.V.).

Author information

Affiliations

  1. the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russia

    • Konstantin A. Lukyanov
    • , Dmitry M. Chudakov
    •  & Sergey Lukyanov
  2. the Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, 80045, Colorado, USA

    • Vladislav V. Verkhusha

Authors

  1. Search for Konstantin A. Lukyanov in:

  2. Search for Dmitry M. Chudakov in:

  3. Search for Sergey Lukyanov in:

  4. Search for Vladislav V. Verkhusha in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Konstantin A. Lukyanov or Vladislav V. Verkhusha.

Related links

Related links

DATABASES

Swiss-Prot

GFP

Dronpa

Kaede

mEosFP

asulCP

FURTHER INFORMATION

Sergey Lukyanov's laboratory

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/nrm1741

Further reading