Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Photoactivatable fluorescent proteins

Abstract

The fluorescence characteristics of photoactivatable proteins can be controlled by irradiating them with light of a specific wavelength, intensity and duration. This provides unique possibilities for the optical labelling and tracking of living cells, organelles and intracellular molecules in a spatio-temporal manner. Here, we discuss the properties of the available photoactivatable fluorescent proteins and their potential applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral and photochemical properties of photoactivatable fluorescent proteins.
Figure 2: Three levels of spatio-temporal labelling with photoactivatable fluorescent proteins.
Figure 3: Criteria for selecting photoactivatable fluorescent proteins for a particular tracking experiment.

Similar content being viewed by others

References

  1. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  2. Verkhusha, V. V. & Lukyanov, K. A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnol. 22, 289–296 (2004).

    Article  CAS  Google Scholar 

  3. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  4. Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. & Leibler, S. Photoactivation turns green fluorescent protein red. Curr. Biol. 7, 809–812 (1997).

    Article  CAS  Google Scholar 

  5. Sawin, K. E. & Nurse, P. Photoactivation of green fluorescent protein. Curr. Biol. 7, R606–R607 (1997).

    Article  Google Scholar 

  6. Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jakobs, S., Schauss, A. C. & Hell, S. W. Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen. FEBS Lett. 554, 194–200 (2003).

    Article  CAS  Google Scholar 

  8. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 13, 1873–1877 (2002).

    Article  Google Scholar 

  9. Chudakov, D. M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nature Biotechnol. 22, 1435–1439 (2004).

    Article  CAS  Google Scholar 

  10. Verkhusha, V. V. & Sorkin, A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12, 279–285 (2005).

    Article  CAS  Google Scholar 

  11. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    Article  CAS  Google Scholar 

  12. Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl Acad. Sci. USA 101, 15905–15910 (2004).

    Article  CAS  Google Scholar 

  13. Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  14. Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  15. Chattoraj, M., King, B. A., Bublitz, G. U. & Boxer, S. G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl Acad. Sci. USA 93, 8362–8367 (1996).

    Article  CAS  Google Scholar 

  16. Niwa, H. et al. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl Acad. Sci. USA 93, 13617–13622 (1996).

    Article  CAS  Google Scholar 

  17. Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl Acad. Sci. USA 94, 2306–2311 (1997).

    Article  CAS  Google Scholar 

  18. Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nature Biotechnol. 14, 1252–1256 (1996).

    Article  CAS  Google Scholar 

  19. Van Thor, J. J., Gensch, T., Hellingwerf, K. J. & Johnson, L. N. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nature Struct. Biol. 9, 37–41 (2002).

    Article  CAS  Google Scholar 

  20. Bell, A. F., Stoner-Ma, D., Wachter, R. M. & Tonge, P. J. Light-driven decarboxylation of wild-type green fluorescent protein. J. Am. Chem. Soc. 125, 6919–6926 (2003).

    Article  CAS  Google Scholar 

  21. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002).

    Article  CAS  Google Scholar 

  22. Labas, Y. A. et al. Diversity and evolution of the green fluorescent protein family. Proc. Natl Acad. Sci. USA 99, 4256–4261 (2002).

    Article  CAS  Google Scholar 

  23. Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. & Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6, 233–238 (2005).

    Article  CAS  Google Scholar 

  24. Mizuno, H. et al. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell 12, 1051–1058 (2003).

    Article  CAS  Google Scholar 

  25. Chudakov, D. M. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnol. 21, 191–194 (2003).

    Article  CAS  Google Scholar 

  26. Chudakov, D. M., Feofanov, A. V., Mudrik, N. N., Lukyanov, S. & Lukyanov, K. A. Chromophore environment provides clue to 'kindling fluorescent protein' riddle. J. Biol. Chem. 278, 7215–7219 (2003).

    Article  CAS  Google Scholar 

  27. Lukyanov, K. A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).

    Article  CAS  Google Scholar 

  28. Quillin, M. L. et al. Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38-A resolution. Biochemistry 44, 5774–5787 (2005).

    Article  CAS  Google Scholar 

  29. Wilmann, P. G., Petersen, J., Devenish, R. J., Prescott, M. & Rossjohn, J. Variations on the GFP chromophore: a polypeptide fragmentation within the chromophore revealed in the 2.1-A crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata. J. Biol. Chem. 280, 2401–2404 (2005).

    Article  CAS  Google Scholar 

  30. Tulu, U. S., Rusan, N. M. & Wadsworth, P. Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells. Curr. Biol. 13, 1894–1899 (2003).

    Article  CAS  Google Scholar 

  31. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  Google Scholar 

  32. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    Article  CAS  Google Scholar 

  33. Onfelt, B., Nedvetzki, S., Yanagi, K. & Davis, D. M. Cutting edge: membrane nanotubes connect immune cells. J. Immunol. 173, 1511–1513 (2004).

    Article  Google Scholar 

  34. Lakowicz, J. R. in Principles of Fluorescence Spectroscopy. 291–318 (Kluwer Academic/Plenum New York, Boston, Dorbrech, London, Moscow, 1999).

    Google Scholar 

  35. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotechnol. 21, 1387–1395 (2003).

    Article  CAS  Google Scholar 

  36. Galperin, E., Verkhusha, V. V. & Sorkin, A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nature Methods 1, 209–217 (2004).

    Article  CAS  Google Scholar 

  37. Giordano, L., Jovin, T. M., Irie, M. & Jares-Erijman, E. A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 124, 7481–7489 (2002).

    Article  CAS  Google Scholar 

  38. Song, L., Jares-Erijmana, E. A. & Jovin, T. M. A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. 150, 177–185 (2002).

    Article  CAS  Google Scholar 

  39. X. Rizzo, M. A., Springer, G. H., Granada, B. & Piston, D. W. An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnol. 22, 445–449 (2004).

    Article  Google Scholar 

  40. Deng, L. et al. Structural basis for the emission of violet bioluminescence from a W92F obelin mutant. FEBS Lett. 506, 281–285 (2001).

    Article  CAS  Google Scholar 

  41. Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnol. 21, 1347–1355 (2003).

    Article  CAS  Google Scholar 

  42. Hell, S. W., Dyba, M. & Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14, 599–609 (2004).

    Article  CAS  Google Scholar 

  43. Zimmermann, T., Rietdorf, J. & Pepperkok, R. Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003).

    Article  CAS  Google Scholar 

  44. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  45. Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

  46. Shagin, D. A. et al. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841–850 (2004).

    Article  CAS  Google Scholar 

  47. Billinton, N. & Knight, A. W. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 291, 175–197 (2001).

    Article  CAS  Google Scholar 

  48. Griesbeck, O. Fluorescent proteins as sensors for cellular functions. Curr. Opin. Neurobiol. 14, 636–641 (2004).

    Article  CAS  Google Scholar 

  49. Post, J. N., Lidke, K. A., Rieger, B. & Arndt-Jovin, D. J. One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett. 579, 325–330 (2005).

    Article  CAS  Google Scholar 

  50. Lee, W. L., Kim, M. K., Schreiber, A. D. & Grinstein, S. Role of ubiquitin and proteasomes in phagosome maturation. Mol. Biol. Cell 16, 2077–2090 (2005).

    Article  CAS  Google Scholar 

  51. Karbowski, M. et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164, 493–499 (2004).

    Article  CAS  Google Scholar 

  52. Arimura, S., Yamamoto, J., Aida, G. P., Nakazono, M. & Tsutsumi, N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc. Natl Acad. Sci. USA 101, 7805–7808 (2004).

    Article  CAS  Google Scholar 

  53. Deryusheva, S. & Gall, J. G. Dynamics of coilin in Cajal bodies of the Xenopus germinal vesicle. Proc. Natl Acad. Sci. USA 101, 4810–4814 (2004).

    Article  CAS  Google Scholar 

  54. Rusan, N. M. & Wadsworth, P. Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase. J. Cell Biol. 168, 21–28 (2005).

    Article  CAS  Google Scholar 

  55. Stanek, D. & Neugebauer, K. M. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J. Cell Biol. 166, 1015–1025 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by the European Commission Framework Program 6 and the Russian Academy of Sciences for the programme in Molecular and Cell Biology (K.A.L., D.M.C. and S.L.), and the National Institute of General Medical Sciences and the National Institute on Drug Abuse (V.V.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantin A. Lukyanov or Vladislav V. Verkhusha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

GFP

Dronpa

Kaede

mEosFP

asulCP

FURTHER INFORMATION

Sergey Lukyanov's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukyanov, K., Chudakov, D., Lukyanov, S. et al. Photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6, 885–890 (2005). https://doi.org/10.1038/nrm1741

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing