Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental cell biology

C. elegans cell cycles: invariance and stem cell divisions

Key Points

  • The somatic lineage of the hermaphroditic nematode Caenorhabditis elegans has been mapped and is largely invariant, whereas germ cells proliferate continuously in a stem cell niche during larval and adult stages.

  • Early embryonic cell divisions are rapid and lack G1 (gap 1) and G2 (gap 2) phases. The introduction of a G2 phase is first observed at gastrulation, and the available evidence indicates that G1 phase is only present late in embryogenesis in a small minority of actively dividing cells.

  • Variations in early embryonic cell-cycle timing between lineages are due to different rates of DNA replication, which are attributable, in part, to the differential activation of the DNA-replication checkpoint.

  • Post-embryonic cell lineages are tightly regulated, with rounds of cell divisions beginning and ending at specific points during larval development. The extrinsic or intrinsic signals that determine the timing of initial cell-cycle entry are not known, although alterations in the heterochronic pathway, which specifies the order of larval programmes, can indirectly alter the timing of cell divisions.

  • The effectors of cell-cycle entry and exit are conserved cell-cycle regulators and include: G1 cyclin–CDK complexes, which are required for cell-cycle entry; and a CDK inhibitor, an Rb homologue and an SCF ubiquitin ligase complex, which mediate cell-cycle exit.

  • Cell-cycle perturbations usually do not block differentiation, although the failure to produce adequate cell numbers can alter differentiation choices.

  • Endoreplication (which is a cell cycle that lacks mitosis) occurs in the intestine and hypodermis, and is apparently used to increase the genome ploidy without the disruption of organ structure that would occur as a result of mitotic division.

  • Germ cell proliferation is dependent on the Delta homologue LAG-2 signal that is provided by the distal tip cell and is recognized by the GLP-1/Notch receptor on germ cells. In the absence of GLP-1 signalling, germ cells enter meiosis. In L3/L4 larval-stage hermaphrodites, proximal germ cells, which lack the LAG-2 signal, enter meiosis to create sperm, whereas in adults, germ cells enter meiosis to generate oocytes.

  • GLP-1 signalling maintains mitotic proliferation of germ cells by inhibiting a translational inhibitor (GLD-1) and a cytoplasmic poly(A) polymerase complex (GLD-2–GLD-3) that function in parallel pathways. GLD-1 and GLD-3 expression is inhibited in proliferating germ cells by translational repression through the PUF family members FBF-1 and FBF-2.

  • Cell-cycle regulators that mediate cell-cycle exit in somatic cells are not required for the negative regulation of germ cell proliferation, except in cases in which germ cell proliferation is halted in response to extrinsic signals (for example, lack of food).

Abstract

The adult Caenorhabditis elegans nematode, a small roundworm, has a precisely defined number of somatic cells that create organs that are also found in larger animals, including intestine, muscles, skin, an excretory system and a primitive brain. Every cell has a defined role in this sophisticated, but tiny animal. Therefore, stringent control of the cell cycle is required to produce the almost invariant cell lineage that generates the C. elegans somatic body plan. The proliferation of germ cells is regulated differently, and occurs within a stem cell niche.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The C. elegans hermaphrodite cell lineage.
Figure 2: Early embryonic lineage and founder cells.
Figure 3: Heterochronic effects on cell lineage.
Figure 4: Proposed models for the regulation of cell-cycle entry and cell-cycle exit.
Figure 5: Endoreplication in the intestine.
Figure 6: Vulval cell fate decisions are linked to the cell cycle.
Figure 7: The gonad of an adult hermaphrodite and the regulation of meiotic entry.

Similar content being viewed by others

References

  1. Ankeny, R. A. The natural history of Caenorhabditis elegans research. Nature Rev. Genetics 2, 474–479 (2001).

    Article  CAS  Google Scholar 

  2. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983). A landmark paper that describes the full embryonic cell lineage and provides an account of all somatic cells generated during embryonic and larval development.

    Article  CAS  PubMed  Google Scholar 

  3. Edgar, L. G. & McGhee, J. D. DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 53, 589–599 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Park, M. & Krause, M. W. Regulation of postembryonic G1 cell cycle progression in Caenorhabditis elegans by a cyclin D/CDK-like complex. Development 126, 4849–4860 (1999).

    CAS  PubMed  Google Scholar 

  5. Boxem, M. & van den Heuvel, S. lin-35 Rb and cki-1 Cip/Kip cooperate in developmental regulation of G1 progression in C. elegans. Development 128, 4349–4359 (2001). Shows that the C. elegans Rb homologue inhibits cell-cycle progression and that loss of CKI-1 and Rb can suppress the G1-phase arrest of cyd-1 or cdk-4 mutants.

    CAS  PubMed  Google Scholar 

  6. Yanowitz, J. & Fire, A. Cyclin D involvement demarcates a late transition in C. elegans embryogenesis. Dev. Biol. 279, 244–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. van den Heuvel, S. The C. elegans cell cycle: overview of molecules and mechanisms. Methods Mol. Biol. 296, 51–67 (2005).

    CAS  PubMed  Google Scholar 

  8. Raff, J. W. & Glover, D. M. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107, 2009–2019 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Kimelman, D., Kirschner, M. & Scherson, T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48, 399–407 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Encalada, S. E. et al. DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. Dev. Biol. 228, 225–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Zhong, W., Feng, H., Santiago, F. E. & Kipreos, E. T. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423, 885–889 (2003). Shows that the CUL-4 ubiquitin ligase prevents re-replication of genomic DNA by promoting the degradation of the replication licensing factor CDT-1.

    Article  CAS  PubMed  Google Scholar 

  13. Brauchle, M., Baumer, K. & Gonczy, P. Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr. Biol. 13, 819–827 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977). A landmark paper that describes the larval cell lineages of both hermaphrodites and males.

    Article  CAS  PubMed  Google Scholar 

  15. Kimble, J. & Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol. 70, 396–417 (1979). A landmark paper that provides the lineage of the somatic gonad, the one class of tissue that was not included in the analysis in reference 14.

    Article  CAS  PubMed  Google Scholar 

  16. Knight, C. G., Patel, M. N., Azevedo, R. B. & Leroi, A. M. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol. Dev. 4, 16–27 (2002).

    Article  PubMed  Google Scholar 

  17. Euling, S. & Ambros, V. Heterochronic genes control cell cycle progress and developmental competence of C. elegans vulva precursor cells. Cell 84, 667–676 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hedgecock, E. M. & White, J. G. Polyploid tissues in the nematode Caenorhabditis elegans. Dev. Biol. 107, 128–133 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Blow, J. J. & Hodgson, B. Replication licensing — defining the proliferative state? Trends Cell Biol. 12, 72–78 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blagosklonny, M. V. & Pardee, A. B. The restriction point of the cell cycle. Cell Cycle 1, 103–110 (2002).

    CAS  PubMed  Google Scholar 

  21. Pasquinelli, A. E. & Ruvkun, G. Control of developmental timing by microRNAs and their targets. Annu. Rev. Cell Dev. Biol. 18, 495–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Riddle, D. L. in The Nematode Caenorhabditis Elegans (ed. Wood, W. B.) 393–412 (Cold Spring Harbor Laboratory Press, New York, 1988).

    Google Scholar 

  24. Hong, Y., Roy, R. & Ambros, V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development 125, 3585–3597 (1998). Shows that CKI-1 regulates cell-cycle exit and entry during larval stages.

    CAS  PubMed  Google Scholar 

  25. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J. & Kipreos, E. T. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa. Mol. Biol. Evol. 17, 1061–1074 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Boxem, M., Srinivasan, D. G. & van den Heuvel, S. The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 126, 2227–2239 (1999).

    CAS  PubMed  Google Scholar 

  28. Richardson, H. E., Wittenberg, C., Cross, F. & Reed, S. I. An essential G1 function for cyclin-like proteins in yeast. Cell 59, 1127–1133 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Knoblich, J. A. et al. Cyclin E controls S phase progression and its downregulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77, 107–120 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Meyer, C. A. et al. Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression. EMBO J. 19, 4533–4542 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Emmerich, J., Meyer, C. A., de la Cruz, A. F., Edgar, B. A. & Lehner, C. F. Cyclin D does not provide essential Cdk4-independent functions in Drosophila. Genetics 168, 867–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sherr, C. J. & Roberts, J. M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699–2711 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Fay, D. S. & Han, M. Mutations in cye-1, a Caenorhabditis elegans cyclin E homolog, reveal coordination between cell-cycle control and vulval development. Development 127, 4049–4060 (2000).

    CAS  PubMed  Google Scholar 

  34. Frolov, M. V. & Dyson, N. J. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell Sci. 117, 2173–2181 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95, 981–991 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Myers, T. R. & Greenwald, I. lin-35 Rb acts in the major hypodermis to oppose Ras-mediated vulval induction in C. elegans. Dev. Cell 8, 117–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ceol, C. J. & Horvitz, H. R. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signalling in C. elegans vulval development. Mol. Cell 7, 461–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Boxem, M. & van den Heuvel, S. C. elegans class B synthetic multivulva genes act in G1 regulation. Curr. Biol. 12, 906–911 (2002). Discusses the contributions of E2F and DP homologues to S-phase entry, as well as the identification of new G1-to-S-phase cell-cycle regulators.

    Article  CAS  PubMed  Google Scholar 

  39. Brodigan, T. M., Liu, J., Park, M., Kipreos, E. T. & Krause, M. Cyclin E expression during development in Caenorhabditis elegans. Dev. Biol. 254, 102–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  41. Fukuyama, M., Gendreau, S. B., Derry, W. B. & Rothman, J. H. Essential embryonic roles of the CKI-1 cyclin-dependent kinase inhibitor in cell-cycle exit and morphogenesis in C. elegans. Dev. Biol. 260, 273–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Feng, H. et al. CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nature Cell Biol. 1, 486–492 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Saito, R. M., Perreault, A., Peach, B., Satterlee, J. S. & van den Heuvel, S. The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans. Nature Cell Biol. 6, 777–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Coqueret, O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 13, 65–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kipreos, E. T., Lander, L. E., Wing, J. P., He, W. W. & Hedgecock, E. M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85, 829–839 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Kipreos, E. T., Gohel, S. P. & Hedgecock, E. M. The C. elegans F-box/WD-repeat protein LIN-23 functions to limit cell division during development. Development 127, 5071–5082 (2000).

    CAS  PubMed  Google Scholar 

  47. Nayak, S. et al. The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Curr. Biol. 12, 277–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Yamanaka, A. et al. Multiple Skp1-related proteins in Caenorhabditis elegans: diverse patterns of interaction with Cullins and F-box proteins. Curr. Biol. 12, 267–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Ambros, V. The temporal control of cell cycle and cell fate in Caenorhabditis elegans. Novartis Found. Symp. 237, 203–214; discussion 214–220 (2001).

    Google Scholar 

  50. Ruvkun, G. & Giusto, J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313–319 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Fay, D. S., Keenan, S. & Han, M. fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev. 16, 503–517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harper, J. W., Burton, J. L. & Solomon, M. J. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16, 2179–2206 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. White, J. in The Nematode Caenorhabditis Elegans (ed. Wood, W. B.) 81–122 (Cold Spring Harbor Laboratory Press, New York, 1988).

    Google Scholar 

  54. Flemming, A. J., Shen, Z. Z., Cunha, A., Emmons, S. W. & Leroi, A. M. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc. Natl Acad. Sci. USA 97, 5285–5290 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nystrom, J. et al. Increased or decreased levels of Caenorhabditis elegans lon-3, a gene encoding a collagen, cause reciprocal changes in body length. Genetics 161, 83–97 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Morita, K. et al. A Caenorhabditis elegans TGF-β, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO J. 21, 1063–1073 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kostic, I., Li, S. & Roy, R. cki-1 links cell division and cell fate acquisition in the C. elegans somatic gonad. Dev. Biol. 263, 242–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Lorson, M. A., Horvitz, H. R. & van den Heuvel, S. LIN-5 is a novel component of the spindle apparatus required for chromosome segregation and cleavage plane specification in Caenorhabditis elegans. J. Cell Biol. 148, 73–86 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nguyen, T. Q., Sawa, H., Okano, H. & White, J. G. The C. elegans septin genes, unc-59 and unc-61, are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis. J. Cell Sci. 113, 3825–3837 (2000).

    CAS  PubMed  Google Scholar 

  60. Albertson, D. G., Sulston, J. E. & White, J. G. Cell cycling and DNA replication in a mutant blocked in cell division in the nematode Caenorhabditis elegans. Dev. Biol. 63, 165–178 (1978).

    Article  CAS  PubMed  Google Scholar 

  61. White, J. G., Horvitz, H. R. & Sulston, J. E. Neuron differentiation in cell lineage mutants of Caenorhabditis elegans. Nature 297, 584–587 (1982).

    Article  CAS  PubMed  Google Scholar 

  62. Sundaram, M. V. Vulval development: the battle between Ras and Notch. Curr. Biol. 14, R311–R313 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, N. & Greenwald, I. The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev. Cell 6, 183–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Ambros, V. Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. Development 126, 1947–1956 (1999).

    CAS  PubMed  Google Scholar 

  65. Seydoux, G. & Schedl, T. The germline in C. elegans: origins, proliferation, and silencing. Int. Rev. Cytol. 203, 139–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hall, D. H. et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev. Biol. 212, 101–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Kimble, J. E. & White, J. G. On the control of germ cell development in Caenorhabditis elegans. Dev. Biol. 81, 208–219 (1981).

    Article  CAS  PubMed  Google Scholar 

  68. Nurse, P. Ordering S phase and M phase in the cell cycle. Cell 79, 547–550 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Austin, J. & Kimble, J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis. Cell 51, 589–599 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Lambie, E. J. & Kimble, J. Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 112, 231–240 (1991).

    CAS  PubMed  Google Scholar 

  71. Berry, L. W., Westlund, B. & Schedl, T. Germ-line tumour formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925–936 (1997).

    CAS  PubMed  Google Scholar 

  72. Pepper, A. S., Killian, D. J. & Hubbard, E. J. Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 163, 115–132 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Petcherski, A. G. & Kimble, J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405, 364–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Francis, R., Maine, E. & Schedl, T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signalling pathway. Genetics 139, 607–630 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones, A. R. & Schedl, T. Mutations in gld-1, a female germ cell-specific tumour suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. Genes Dev. 9, 1491–1504 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Jan, E., Motzny, C. K., Graves, L. E. & Goodwin, E. B. The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 18, 258–269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, L., Eckmann, C. R., Kadyk, L. C., Wickens, M. & Kimble, J. A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419, 312–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Eckmann, C. R., Kraemer, B., Wickens, M. & Kimble, J. GLD-3, a bicaudal-C homologue that inhibits FBF to control germline sex determination in C. elegans. Dev. Cell 3, 697–710 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Eckmann, C. R., Crittenden, S. L., Suh, N. & Kimble, J. GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168, 147–160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kadyk, L. C. & Kimble, J. Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125, 1803–1813 (1998).

    CAS  PubMed  Google Scholar 

  81. Crittenden, S. L. et al. A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417, 660–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Hansen, D., Wilson-Berry, L., Dang, T. & Schedl, T. Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131, 93–104 (2004). References 79, 81 and 82 provide important insights into meiotic entry by describing pathways that regulate GLD-1 and GLD-2–GLD-3 in the germ line.

    Article  CAS  PubMed  Google Scholar 

  83. Lamont, L. B., Crittenden, S. L., Bernstein, D., Wickens, M. & Kimble, J. FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev. Cell 7, 697–707 (2004). Shows that the interplay between FBF-1 and FBF-2 regulates the size of the germ stem-cell niche.

    Article  CAS  PubMed  Google Scholar 

  84. Wickens, M., Bernstein, D. S., Kimble, J. & Parker, R. A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18, 150–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Deng, W. & Lin, H. Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int. Rev. Cytol. 203, 93–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. McCarter, J., Bartlett, B., Dang, T. & Schedl, T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev. Biol. 181, 121–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Killian, D. J. & Hubbard, E. J. Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Dev. Biol. 279, 322–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Lamitina, S. T. & L'Hernault, S. W. Dominant mutations in the Caenorhabditis elegans Myt1 ortholog wee-1.3 reveal a novel domain that controls M-phase entry during spermatogenesis. Development 129, 5009–5018 (2002).

    CAS  PubMed  Google Scholar 

  89. Ashcroft, N. & Golden, A. CDC-25.1 regulates germline proliferation in Caenorhabditis elegans. Genesis 33, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Subramaniam, K. & Seydoux, G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126, 4861–4871 (1999).

    CAS  PubMed  Google Scholar 

  91. Hansen, D., Hubbard, E. J. & Schedl, T. Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Dev. Biol. 268, 342–357 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank T. Schedl, D. Hansen, J. Gaertig and members of the Kipreos laboratory for critical reading of the manuscript, and B. Goldstein for the use of movie frames of a moving adult Caenorhabditis elegans that were used to create the image in Figure 1. Research in the Kipreos laboratory is supported by grants from the National Institutes of Health and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

CDK2

CDK4

Wormbase

CDC-25.1

cdk-4

cki-1

cki-2

cul-1

cul-2

cyd-1

cye-1

DBL-1

DPL-1

efl-1

EFL-2

fbf-1

fbf-2

gld-1

gld-2

gld-3

glp-1

K03E5.3

lag-2

lin-12

lin-14

lin-23

lin-28

lin-35

nos-1

nos-2

PIE-1

SKR-1

SKR-2

WEE-1.3

FURTHER INFORMATION

Edward Kipreos' laboratory

Glossary

DNA-REPLICATION CHECKPOINT

This cell-cycle checkpoint ensures that mitosis is not initiated when DNA replication is either blocked or ongoing.

BLAST CELL

A cell that has not undergone terminal differentiation and that divides to produce cells of a committed cell lineage.

SYNCYTIUM

A common (shared) cytoplasm containing more than one nucleus.

G0 PHASE

A 'resting' (quiescent) cell-cycle stage, in which a cell does not progress through the cell cycle. Cells enter G0 phase from G1 phase, and after receiving the proper stimulus they can return to G1 phase and continue cell-cycle progression.

HETEROCHRONIC GENE

A gene that regulates the timing of developmental events. Mutations in heterochronic genes affect the timing of developmental programmes without overtly altering the programmes themselves.

FOUNDER CELL

A C. elegans early embryonic blast cell, the descendants of which divide relatively synchronously and produce a defined subset of tissue types.

CYCLIN-DEPENDENT KINASE

(CDK). A protein kinase that requires an associated cyclin protein for activity. Various CDK–cyclin complexes regulate different stages of the cell cycle or of the RNA polymerase II transcription cycle.

ORTHOLOGUES

Genes in different species that have arisen directly from a single ancestral gene in the last common ancestor of the species. Orthologous genes often have similar cellular functions.

SYNTHETIC MULTIVULVA (SYNMUV) PHENOTYPE

A mutant phenotype in which hermaphrodites have multiple vulvae that arises from combining class A mutant synMuv alleles with class B mutant synMuv alleles. Mutants of a single class do not have the multivulva phenotype.

SCF UBIQUITIN LIGASE

A multi-subunit ubiquitin ligase (E3) that includes a cullin, CUL1 (for metazoa) or Cdc53 (for budding yeast), which is a scaffold for the complex; a RING-finger protein Rbx1/Roc1/Hrt1, which binds to the ubiquitin-conjugating enzyme (E2); an adaptor protein Skp1; and an F-box protein, which is the substrate-binding component that positions the substrate for ubiquitylation by E2.

CIP/KIP FAMILY

(CDK-inhibitory protein/kinase-inhibitory protein). A family of CDK inhibitors that includes the mammalian p21Cip1, p27Kip1 and p57Kip2, and D. melanogaster Dacapo.

ANAPHASE PROMOTING COMPLEX/CYCLOSOME

(APC/C). A multi-subunit E3 ubiquitin ligase that has an important role in the transition into anaphase, as well as the exit from mitosis and the maintenance of the G1 state.

SEAM CELL

A hypodermal blast cell that produces lateral cuticular ridges (alae) during the L1 larval and adult stages. Seam cells divide during the larval stages to produce more seam cells, hyp7 cells — the main hypodermal (skin) cell for the body — and neurons (in a subset of seam cell lineages).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipreos, E. C. elegans cell cycles: invariance and stem cell divisions. Nat Rev Mol Cell Biol 6, 766–776 (2005). https://doi.org/10.1038/nrm1738

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing