Annexins: linking Ca2+ signalling to membrane dynamics

Key Points

  • Annexins are a multigene family of Ca2+-regulated proteins that are characterized by a unique Ca2+- and membrane-binding module — the annexin core domain. This core domain enables Ca2+-bound annexins to peripherally dock onto membranes that contain negatively charged phospholipids.

  • Each annexin contains a second, highly varible region — the N-terminal interaction domain. It harbours binding sites for cytoplasmic protein ligands that can be targeted to membranes through the annexin-core-mediated phospholipid interaction.

  • Membrane-bound annexins can form lateral self-assemblies that affect the mobility and organization of membrane lipids. Such activities probably regulate membrane-related processes like membrane-domain organization and membrane transport in endocytosis and exocytosis.

  • Interfering with intracellular annexin function, by overexpressing mutants or by using RNA-interference-mediated downregulation, has different effects depending on the annexin being targeted. These include effects on actin assemblies at cellular membranes, the organization of endosomal subcompartments, Ca2+-regulated exocytosis and midbody formation during cytokinesis.

  • Some annexins can also occur extracellularly and can have functions outside cells. Their release is not fully understood, but probably follows non-classical secretion pathways.

  • Extracellular annexin functions that have been substantiated by mouse knockout models are anti-inflammatory and fibrinolytic activities. These are probably mediated through specific cell-surface interactions with chemoattractant receptors on cells of the immune system and key enzymes of the fibrinolytic cascade, respectively.


Eukaryotic cells contain various Ca2+-effector proteins that mediate cellular responses to changes in intracellular Ca2+ levels. A unique class of these proteins — annexins — can bind to certain membrane phospholipids in a Ca2+-dependent manner, providing a link between Ca2+ signalling and membrane functions. By forming networks on the membrane surface, annexins can function as organizers of membrane domains and membrane-recruitment platforms for proteins with which they interact. These and related properties enable annexins to participate in several otherwise unrelated events that range from membrane dynamics to cell differentiation and migration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Annexin structure.
Figure 2: Annexin assemblies on membranes.
Figure 3: The regulation of membrane–actin interactions by annexin A2.
Figure 4: Annexins in membrane organization and trafficking.
Figure 5: Annexins have specialized extracellular roles.

Accession codes


Protein Data Bank


  1. 1

    Huber, R., Römisch, J. & Paques, E. P. The crystal and molecular structure of human annexin V, an anticoagulant calcium, membrane binding protein. EMBO J. 9, 3867–3874 (1990). The first crystal structure of an annexin (annexin A5) shows the characteristic fold of the annexin core.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Liemann, S. & Lewit-Bentley, A. Annexins: a novel family of calcium- and membrane-binding proteins in search of a function. Structure 3, 233–237 (1995).

    CAS  PubMed  Google Scholar 

  3. 3

    Swairjo, M. A. & Seaton, B. A. Annexin structure and membrane interactions: a molecular perspective. Annu. Rev. Biophys. Biomol. Struct. 23, 193–213 (1994).

    CAS  PubMed  Google Scholar 

  4. 4

    Swairjo, M. A., Concha, N. O., Kaetzel, M. A., Dedman, J. R. & Seaton, B. A. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct. Biol. 2, 968–974 (1995).

    CAS  PubMed  Google Scholar 

  5. 5

    Huber, R., Schneider, M., Mayr, I., Römisch, J. & Paques, E. P. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 Å resolution. FEBS Lett. 275, 15–21 (1990).

    CAS  PubMed  Google Scholar 

  6. 6

    Weng, X. et al. Crystal structure of human annexin I at 2.5 Å resolution. Protein Sci. 2, 448–458 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Concha, N. O., Head, J. F., Kaetzel, M. A., Dedman, J. R. & Seaton, B. A. Rat annexin V crystal structure: Ca2+-induced conformational changes. Science 261, 1321–1324 (1993).

    CAS  PubMed  Google Scholar 

  8. 8

    Lewit-Bentley, A., Morera, S., Huber, R. & Bodo, G. The effect of metal binding on the structure of annexin V and implications for membrane binding. Eur. J. Biochem. 210, 73–77 (1992).

    CAS  PubMed  Google Scholar 

  9. 9

    Wice, B. M. & Gordon, J. I. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin. J. Cell Biol. 116, 405–422 (1992).

    CAS  PubMed  Google Scholar 

  10. 10

    Langen, R., Isas, J. M., Hubbel, W. L. & Haigler, H. T. A transmembrane form of annexin XII detected by site-directed spin labeling. Proc. Natl Acad. Sci. USA 95, 14060–14065 (1998). This study used a site-specific spin-labelling approach to describe a transmembrane form of the Hydra annexin B12 that is proposed to result from a conformational rearrangement induced by acidic pH values.

    CAS  PubMed  Google Scholar 

  11. 11

    Kubista, H., Hawkins, T. E., Patel, D. R., Haigler, H. T. & Moss, S. E. Annexin 5 mediates peroxide-induced Ca2+ influx in B cells. Curr. Biol. 9, 1403–1406 (1999).

    CAS  PubMed  Google Scholar 

  12. 12

    Huber, R., Berendes, R., Burger, A., Luecke, H. & Karshikov, A. in The Annexins (ed. Moss, S. E.) 105–124 (Portland, London, 1992).

    Google Scholar 

  13. 13

    Rosengarth, A. & Luecke, H. A calcium-driven conformational switch of the N-terminal and core domains of annexin A1. J. Mol. Biol. 326, 1317–1325 (2003).

    CAS  PubMed  Google Scholar 

  14. 14

    Gerke, V. & Moss, S. E. Annexins: from structure to function. Phys. Rev. 82, 331–371 (2002).

    CAS  Google Scholar 

  15. 15

    Rety, S. et al. The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nature Struct. Biol. 6, 89–95 (1999).

    CAS  PubMed  Google Scholar 

  16. 16

    Rety, S. et al. Structural basis of the Ca2+-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure 8, 175–184 (2000).

    CAS  PubMed  Google Scholar 

  17. 17

    Lewit-Bentley, A., Rety, S., Sopkova-de Oliveira Santos, J. & Gerke, V. S100–annexin complexes: some insights from structural studies. Cell Biol. Int. 24, 799–802 (2000).

    CAS  PubMed  Google Scholar 

  18. 18

    Moss, S. E. & Morgan, R. O. The annexins. Genome Biol. 5, 219 (2004).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Avila-Sakar, A. J., Creutz, C. E. & Kretsinger, R. H. Crystal structure of bovine annexin VI in a calcium-bound state. Biochim. Biophys. Acta 1387, 103–116 (1998).

    CAS  PubMed  Google Scholar 

  20. 20

    Avila-Sakar, A. J., Kretsinger, R. H. & Creutz, C. E. Membrane-bound 3D structures reveal the intrinsic flexibility of annexin VI. J. Struct. Biol. 130, 54–62 (2000).

    CAS  PubMed  Google Scholar 

  21. 21

    Freye-Minks, C., Kretsinger, R. H. & Creutz, C. E. Structural and dynamic changes in human annexin VI induced by a phosphorylation-mimicking mutation, T356D. Biochemistry 42, 620–630 (2003).

    CAS  PubMed  Google Scholar 

  22. 22

    Kaetzel, M. A. et al. Phosphorylation mutants elucidate the mechanism of annexin IV-mediated membrane aggregation. Biochemistry 40, 4192–4199 (2001).

    CAS  PubMed  Google Scholar 

  23. 23

    Oling, F. et al. Structure of membrane-bound annexin A5 trimers: a hybrid cryo-EM–X-ray crystallography study. J. Mol. Biol. 304, 561–573 (2000).

    CAS  PubMed  Google Scholar 

  24. 24

    Pigault, C., Follenius, W. A., Schmutz, M., Freyssinet, J. M. & Brisson, A. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J. Mol. Biol. 236, 199–208 (1994).

    CAS  PubMed  Google Scholar 

  25. 25

    Voges, D. et al. Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy–X-ray crystallography study. J. Mol. Biol. 238, 199–213 (1994).

    CAS  PubMed  Google Scholar 

  26. 26

    Reviakine, I., Bergsma-Schutter, W. & Brisson, A. Growth of protein 2-D crystals on supported planar lipid bilayers imaged in situ by AFM. J. Struct. Biol. 121, 356–361 (1998). Using electron microscopy and atomic-force microscopy, references 24–26 reveal the formation of ordered annexin A5 arrays on planar lipid bilayers that contain acidic phospholipids.

    CAS  PubMed  Google Scholar 

  27. 27

    Kenis, H. et al. Cell surface expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J. Biol. Chem. 279, 52623–52629 (2004).

    CAS  PubMed  Google Scholar 

  28. 28

    Janshoff, A., Ross, M., Gerke, V. & Steinem, C. Visualization of annexin I binding to calcium-induced phosphatidylserine domains. Chembiochem. 2, 587–590 (2001).

    CAS  PubMed  Google Scholar 

  29. 29

    Menke, M., Ross, M., Gerke, V. & Steinem, C. The molecular arrangement of membrane-bound annexin A2–S100A10 tetramer as revealed by scanning force microscopy. Chembiochem 5, 1003–1006 (2004).

    CAS  PubMed  Google Scholar 

  30. 30

    Junker, M. & Creutz, C. E. Endonexin (annexin IV)-mediated lateral segregation of phosphatidylglycerol in phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 32, 9968–9974 (1993).

    CAS  PubMed  Google Scholar 

  31. 31

    Wang, W. & Creutz, C. E. Role of the amino-terminal domain in regulating interactions of annexin I with membranes: effects of amino-terminal truncation and mutagenesis of the phosphorylation sites. Biochemistry 33, 275–282 (1994).

    PubMed  Google Scholar 

  32. 32

    Drust, D. S. & Creutz, C. E. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature 331, 88–91 (1988).

    CAS  PubMed  Google Scholar 

  33. 33

    Lambert, O., Gerke, V., Bader, M. F., Porte, F. & Brisson, A. Structural analysis of junctions formed between lipid membranes and several annexins by cryo electron microscopy. J. Mol. Biol. 272, 42–55 (1997).

    CAS  PubMed  Google Scholar 

  34. 34

    Creutz, C. E., Snyder, S. L., Daigle, S. N. & Redick, J. Identification, localization, and functional implications of an abundant nematode annexin. J. Cell Biol. 132, 1079–1092 (1996). This study describes the identification of the main C. elegans annexin, NEX-1, and its striking enrichment on the cytoplasmic surface of membranes of the spermathecal valve.

    CAS  PubMed  Google Scholar 

  35. 35

    Daigle, S. N. & Creutz, C. E. Transcription, biochemistry and localization of nematode annexins. J. Cell Sci. 112, 1901–1913 (1999).

    CAS  PubMed  Google Scholar 

  36. 36

    Wang, W. & Creutz, C. E. Regulation of the chromaffin granule aggregating activity of annexin I by phosphorylation. Biochemistry 31, 9934–9939 (1992).

    CAS  PubMed  Google Scholar 

  37. 37

    Johnstone, S. A., Hubaishy, I. & Waisman, D. M. Phosphorylation of annexin II tetramer by protein kinase C inhibits aggregation of lipid vesicles by the protein. J. Biol. Chem. 267, 25976–25981 (1992).

    CAS  PubMed  Google Scholar 

  38. 38

    Caohuy, H. & Pollard, H. B. Activation of annexin 7 by protein kinase C in vitro and in vivo. J. Biol. Chem. 276, 12813–12821 (2001).

    CAS  PubMed  Google Scholar 

  39. 39

    Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999).

    CAS  PubMed  Google Scholar 

  40. 40

    Merrifield, C. J. et al. Annexin 2 has an essential role in actin-based macropinocytic rocketing. Curr. Biol. 11, 1136–1141 (2001).

    CAS  PubMed  Google Scholar 

  41. 41

    Zobiack, N. et al. Cell surface attachment of pedestal forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. J. Cell Sci. 115, 91–98 (2002).

    CAS  PubMed  Google Scholar 

  42. 42

    Hayes, M. J. et al. Annexin 2 binding to phosphatidylinositol 4,5 bisphosphate on endocytic vesicles is regulated by the stress response pathway. J. Biol. Chem. 279, 14157–14164 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Rescher, U., Ruhe, D., Ludwig, C., Zobiack, N. & Gerke, V. Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. J. Cell Sci. 117, 3473–3480 (2004).

    CAS  PubMed  Google Scholar 

  44. 44

    Rescher, U. & Gerke, V. Annexins — unique membrane binding proteins with diverse functions. J. Cell Sci. 117, 2631–2639 (2004).

    CAS  PubMed  Google Scholar 

  45. 45

    Hayes, M. J., Rescher, U., Gerke, V. & Moss, S. E. Annexin–actin interactions. Traffic 5, 571–576 (2004).

    CAS  PubMed  Google Scholar 

  46. 46

    Babiychuk, E. B. & Draeger, A. Annexins in cell membrane dynamics: Ca2+-regulated association of lipid microdomains. J. Cell Biol. 150, 1113–1123 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Tomas, A., Futter, C. & Moss, S. E. Annexin 11 is required for midbody formation and completion of the terminal phase of cytokinesis. J. Cell Biol. 165, 813–822 (2004). By employing RNA interference to downregulate annexin A11, these authors show that this annexin functions in the terminal phase of cytokinesis, possibly participating in the delivery of new membrane material that is required for abscission.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Gerke, V. & Moss, S. E. Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129–154 (1997).

    CAS  PubMed  Google Scholar 

  49. 49

    Eberhard, D. A., Karns, L. R., VandenBerg, S. R. & Creutz, C. E. Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J. Cell Sci. 114, 3155–3166 (2001).

    CAS  PubMed  Google Scholar 

  50. 50

    Mohiti, J., Caswell, A. M. & Walker, J. H. The nuclear location of annexin V in the human osteosarcoma cell line MG-63 depends on serum factors and tyrosine kinase signaling pathways. Exp. Cell Res. 234, 98–104 (1997).

    CAS  PubMed  Google Scholar 

  51. 51

    Sacre, S. M. & Moss, S. E. Intracellular localization of endothelial cell annexins is differentially regulated by oxidative stress. Exp. Cell Res. 274, 254–263 (2002).

    CAS  PubMed  Google Scholar 

  52. 52

    Mizutani, A. et al. CAP-50, a newly identified annexin, localizes in nuclei of cultured fibroblast 3Y1 cells. J. Biol. Chem. 267, 13498–13504 (1992).

    CAS  PubMed  Google Scholar 

  53. 53

    Tomas, A. & Moss, S. E. Calcium- and cell cycle-dependent association of annexin 11 with the nuclear envelope. J. Biol. Chem. 278, 20210–20216 (2003).

    CAS  PubMed  Google Scholar 

  54. 54

    Vedeler, A. & Hollas, H. Annexin II is associated with mRNA which may constitute a distinct subpopulation. Biochem. J. 348, 565–572 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Filipenko, N. R., Macleod, T. J., Yoon, C. S. & Waisman, D. M. Annexin A2 is a novel RNA binding protein. J. Biol. Chem. 279, 8723–8731 (2004).

    CAS  PubMed  Google Scholar 

  56. 56

    Chapman, L. P., Epton, M. J., Buckingham, J. C., Morris, J. F. & Christian, H. C. Evidence for a role of the adenosine 5′-triphosphate-binding cassette transporter A1 in the externalization of annexin I from pituitary folliculo-stellate cells. Endocrinology 144, 1062–1073 (2003).

    CAS  PubMed  Google Scholar 

  57. 57

    Danielsen, E. M., Van Deurs, B. & Hansen, G. H. 'Nonclassical' secretion of annexin A2 to the lumenal side of the enterocyte brush border membrane. Biochemistry 42, 14670–14676 (2003).

    CAS  PubMed  Google Scholar 

  58. 58

    Faure, A. V., Migne, C., Devilliers, G. & Ayala-Sanmartin, J. Annexin 2 'secretion' accompanying exocytosis of chromaffin cells: possible mechanisms of annexin release. Exp. Cell Res. 276, 79–89 (2002).

    CAS  PubMed  Google Scholar 

  59. 59

    Genge, B. R., Wu, L. N. & Wuthier, R. E. Differential fractionation of matrix vesicle proteins. Further characterization of the acidic phospholipid-dependent Ca2+-binding proteins. J. Biol. Chem. 265, 4703–4710 (1990).

    CAS  PubMed  Google Scholar 

  60. 60

    Deora, A. B., Kreitzer, G., Jacovina, A. T. & Hajjar, K. A. An annexin 2 phosphorylation switch mediates its p11-dependent translocation to the cell surface. J. Biol. Chem. 279, 43411–43418 (2004).

    CAS  PubMed  Google Scholar 

  61. 61

    Creutz, C. E. The annexins and exocytosis. Science 258, 924–931 (1992).

    CAS  PubMed  Google Scholar 

  62. 62

    Creutz, C. E., Pazoles, C. J. & Pollard, H. B. Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of chromaffin granules. J. Biol. Chem. 253, 2858–2866 (1978). The founding paper of the entire annexin field, which describes the first identification of an annexin (synexin; now known as annexin A7). It also reports a hallmark activity for this annexin — Ca2+-dependent vesicle aggregation.

    CAS  PubMed  Google Scholar 

  63. 63

    Creutz, C. E. in Annexins: Biological Importance and Annexin-Related Pathologies (ed. Bandorowicz-Pikula, J.) 1–20 (Landes Bioscience, Georgetown, 2003).

    Google Scholar 

  64. 64

    Creutz, C. E. et al. Identification of chromaffin granule-binding proteins. J. Biol. Chem. 262, 1860–1868 (1987).

    CAS  PubMed  Google Scholar 

  65. 65

    Creutz, C. E. Cis-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin. J. Cell Biol. 91, 247–256 (1981).

    CAS  PubMed  Google Scholar 

  66. 66

    Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    CAS  PubMed  Google Scholar 

  67. 67

    Ali, S. M., Geisow, M. J. & Burgoyne, R. D. A role for calpactin in calcium dependent exocytosis in adrenal chromaffin cells. Nature 340, 313–315 (1989).

    CAS  PubMed  Google Scholar 

  68. 68

    Sarafian, T., Pradel, L. A., Henry, J. P., Aunis, D. & Bader, M. F. The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C. J. Cell Biol. 114, 1135–1147 (1991).

    CAS  PubMed  Google Scholar 

  69. 69

    Chasserot-Golaz, S. et al. Annexin II in exocytosis: catecholamin secretion requires the transolcation of p36 to the subplasmalemmal region in chromaffin cells. J. Cell Biol. 133, 1217–1236 (1996).

    CAS  PubMed  Google Scholar 

  70. 70

    Graham, M. E., Gerke, V. & Burgoyne, R. D. Modification of annexin II expression in PC12 cell line does not affect Ca2+-dependent exocytosis. Mol. Biol. Cell 8, 431–442 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    König, J., Prenen, J., Nilius, B. & Gerke, V. The annexin II–p11 complex is involved in regulated exocytosis in bovine pulmonary artery endothelial cells. J. Biol. Chem. 273, 19679–19684 (1998).

    PubMed  Google Scholar 

  72. 72

    Knop, M., Aareskjold, E., Bode, G. & Gerke, V. Rab3D and annexin A2 play a role in regulated secretion of vWF, but not tPA, from endothelial cells. EMBO J. 23, 2982–2992 (2004). Using different approaches, references 67, 68 and 72 show that the annexin-A2–S100A10 complex is involved in certain exocytosis events, namely the Ca2+-evoked exocytosis of chromaffin granules in adrenal chromaffin cells and of Weibel–Palade bodies in endothelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Lafont, F., Lecat, S., Verkande, P. & Simons, K. Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 142, 1413–1427 (1998). An elegant paper showing that in polarized epithelial cells the myristoylated form of annexin A13b functions in the formation and apical delivery of transport vesicles that are rich in lipid microdomains.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Tucker, W. C., Weber, T. & Chapman, E. R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    CAS  PubMed  Google Scholar 

  75. 75

    Damer, C. K. & Creutz, C. E. Synergistic membrane interactions of the two C2 domains of synaptotagmin. J. Biol. Chem. 269, 31115–31123 (1994).

    CAS  PubMed  Google Scholar 

  76. 76

    Emans, N. et al. Annexin II is a major component of fusogenic endosomal vesicles. J. Cell Biol. 120, 1357–1369 (1993).

    CAS  PubMed  Google Scholar 

  77. 77

    Harder, T. & Gerke, V. The subcellular distribution of early endosomes is affected by the annexin II2p112 complex. J. Cell Biol. 123, 1119–1132 (1993).

    CAS  PubMed  Google Scholar 

  78. 78

    Jost, M., Zeuschner, D., Seemann, J., Weber, K. & Gerke, V. Identification and characterization of a novel type of annexin–membrane interaction: Ca2+ is not required for the association of annexin II with endosomal membranes. J. Cell Sci. 110, 221–228 (1997).

    CAS  PubMed  Google Scholar 

  79. 79

    Seemann, J., Weber, K., Osborn, M., Parton, R. G. & Gerke, V. The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain. Mol. Biol. Cell 7, 1359–1374 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Mayran, N., Parton, R. G. & Gruenberg, J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J. 22, 3242–3253 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    CAS  Google Scholar 

  82. 82

    Zobiack, N., Rescher, U., Ludwig, C., Zeuschner, D. & Gerke, V. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol. Biol. Cell 14, 4896–4908 (2003). References 80 and 82 used the RNA-interference-mediated depletion of annexin A2 to show that this protein is involved in early endosome dynamics — that is, in maintaining the morphological appearance of recycling endosomes and in the biogenesis of multivesicular endosomes, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Harder, T., Kellner, R., Parton, R. G. & Gruenberg, J. Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell 8, 533–545 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Zeuschner, D., Stoorvogel, W. & Gerke, V. Association of annexin 2 with recycling endosomes requires either calcium or cholesterol. Eur. J. Cell Biol. 80, 499–507 (2001).

    CAS  PubMed  Google Scholar 

  85. 85

    Futter, C. E., Felder, S., Schlessinger, J., Ullrich, A. & Hopkins, C. R. Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J. Cell Biol. 120, 77–83 (1993).

    CAS  PubMed  Google Scholar 

  86. 86

    Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Kamal, A., Ying, Y. & Anderson, R. G. Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J. Cell Biol. 142, 937–947 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Grewal, T. et al. Annexin VI stimulates endocytosis and is involved in the trafficking of LDL to the prelysosmal compartment. J. Biol. Chem. 275, 33806–33813 (2000).

    CAS  PubMed  Google Scholar 

  89. 89

    Pons, M. et al. Evidence for the involvement of annexin 6 in the trafficking between the endocytic compartment and lysosomes. Exp. Cell Res. 269, 13–22 (2001).

    CAS  PubMed  Google Scholar 

  90. 90

    Kaetzel, M. A. & Dedman, J. R. Annexin VI regulation of cardiac function. Biochem. Biophys. Res. Commun. 322, 1171–1177 (2004).

    CAS  PubMed  Google Scholar 

  91. 91

    Smythe, E., Smith, P. D., Jacob, S. M., Theobald, J. & Moss, S. E. Endocytosis occurs independently of annexin VI in human A431 cells. J. Cell Biol. 124, 301–306 (1994).

    CAS  PubMed  Google Scholar 

  92. 92

    Matveev, S., Uittenbogaard, A., van Der Westhuyzen, D. & Smart, E. J. Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. Eur. J. Biochem. 268, 5609–5916 (2001).

    CAS  PubMed  Google Scholar 

  93. 93

    Uittenbogaard, A., Everson, W. V., Matveev, S. V. & Smart, E. J. Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex. J. Biol. Chem. 277, 4925–4931 (2002).

    CAS  PubMed  Google Scholar 

  94. 94

    Smart, E. J., De Rose, R. A. & Farber, S. A. Annexin 2–caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport. Proc. Natl Acad. Sci. USA 101, 3450–3455 (2004). Describes the involvement of an annexin-A2–caveolin-1 complex in intestinal sterol transport.

    CAS  PubMed  Google Scholar 

  95. 95

    Raynal, P. & Pollard, H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim. Biophys. Acta 1197, 63–93 (1994). A comprehensive annexin review that summarizes, among other things, their biochemical properties — in particular, their Ca2+- and phospholipid-binding affinities.

    CAS  PubMed  Google Scholar 

  96. 96

    Berendes, R., Voges, D., Demange, P., Huber, R. & Burger, A. Structure–function analysis of the ion channel selectivity filter in human annexin V. Science 262, 427–430 (1993).

    CAS  PubMed  Google Scholar 

  97. 97

    Demange, P. et al. Annexin V: the key to understanding ion selectivity and voltage regulation? Trends Biochem. Sci. 19, 272–276 (1994).

    CAS  PubMed  Google Scholar 

  98. 98

    Nilius, B. et al. Annexin II modulates volume-activated chloride currents in vascular endothelial cells. J. Biol. Chem. 271, 30631–30636 (1996).

    CAS  PubMed  Google Scholar 

  99. 99

    Okuse, K. et al. Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417, 653–656 (2002).

    CAS  PubMed  Google Scholar 

  100. 100

    Girard, C. et al. p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1. EMBO J. 21, 4439–4448 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    van de Graaf, S. F. et al. Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10–annexin 2 complex. EMBO J. 22, 1478–1487 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Flower, R. J. & Rothwell, N. J. Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol. Sci. 15, 71–76 (1994).

    CAS  PubMed  Google Scholar 

  103. 103

    John, C. D. et al. Annexin 1 and the regulation of endocrine function. Trends Endocrinol. Metab. 15, 103–109 (2004).

    CAS  PubMed  Google Scholar 

  104. 104

    Perretti, M. & Gavins, F. N. Annexin 1: an endogenous anti-inflammatory protein. News Physiol. Sci. 18, 60–64 (2003).

    CAS  PubMed  Google Scholar 

  105. 105

    Perretti, M. & Flower, R. J. Annexin 1 and the biology of the neutrophil. J. Leukoc. Biol. 76, 25–29 (2004). An excellent review by two key investigators who work on the anti-inflammatory actions of annexin A1.

    CAS  PubMed  Google Scholar 

  106. 106

    Walther, A., Riehemann, K. & Gerke, V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 5, 831–840 (2000). This paper shows for the first time that annexin A1 functions as an endogenous ligand for FPR.

    CAS  PubMed  Google Scholar 

  107. 107

    Perretti, M., Getting, S. J., Solito, E., Murphy, P. M. & Gao, J. L. Involvement of the receptor for formylated peptides in the in vivo anti-migratory actions of annexin 1 and its mimetics. Am. J. Pathol. 158, 1969–1973 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Perretti, M. et al. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nature Med. 8, 1296–1302 (2002).

    CAS  PubMed  Google Scholar 

  109. 109

    Ernst, S. et al. An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J. Immunol. 172, 7669–7676 (2004). References 108 and 109 show that annexin A1 also functions as an agonist of the FPR-like receptors FPRL1 and FPRL2.

    CAS  PubMed  Google Scholar 

  110. 110

    Prossnitz, E. R. & Ye, R. D. The N-formyl peptide receptor: a model for the study of chemoattractant receptor structure and function. Pharmacol. Ther. 74, 73–102 (1997).

    CAS  PubMed  Google Scholar 

  111. 111

    Gavins, F. N., Yona, S., Kamal, A. M., Flower, R. J. & Perretti, M. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 101, 4140–4147 (2003).

    CAS  PubMed  Google Scholar 

  112. 112

    Hannon, R. et al. Aberrant inflammation and resistance to glucocorticoids in annexin 1−/− mouse. FASEB J. 17, 253–255 (2003). Reveals aberrant inflammatory reactions and an elevated resistance to glucocorticoid treatment in annexin A1-null mice.

    CAS  PubMed  Google Scholar 

  113. 113

    Yang, Y. H. et al. Modulation of inflammation and response to dexamethasone by annexin-1 in antigen-induced arthritis. Arthritis Rheum. 50, 976–984 (2004).

    CAS  PubMed  Google Scholar 

  114. 114

    Rescher, U., Danielczyk, A., Markoff, A. & Gerke, V. Functional activation of the formyl peptide receptor by a new endogenous ligand in human lung A549 cells. J. Immunol. 169, 1500–1504 (2002).

    CAS  PubMed  Google Scholar 

  115. 115

    Solito, E. et al. A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils. FASEB J. 17, 1544–1546 (2003).

    CAS  PubMed  Google Scholar 

  116. 116

    Arur, S. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell 4, 587–598 (2003).

    CAS  PubMed  Google Scholar 

  117. 117

    Oh, P. et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629–635 (2004).

    CAS  PubMed  Google Scholar 

  118. 118

    Kim, J. & Hajjar, K. A. Annexin II: a plasminogen-plasminogen activator co-receptor. Front. Biosci. 7, d341–d348 (2002).

    CAS  PubMed  Google Scholar 

  119. 119

    Ling, Q. et al. Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J. Clin. Invest. 113, 38–48 (2004). Uses gene ablation in mice to show that annexin A2 participates in fibrinolysis and neoangiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Sullivan, D. M., Wehr, N. B., Fergusson, M. M., Levine, R. L. & Finkel, T. Identification of oxidant-sensitive proteins: TNF-α induces protein glutathiolation. Biochemistry 39, 11121–11128 (2000).

    CAS  PubMed  Google Scholar 

  121. 121

    Rowan, W. H. III, Sun, P. & Liu, L. Nitration of annexin II tetramer. Biochemistry 41, 1409–1420 (2002).

    CAS  PubMed  Google Scholar 

  122. 122

    Hajjar, K. A. & Jacovina, A. T. Modulation of annexin II by homocysteine: implications for atherothrombosis. J. Investig. Med. 46, 364–369 (1998).

    CAS  PubMed  Google Scholar 

  123. 123

    Ghitescu, L. D., Gugliucci, A. & Dumas, F. Actin and annexins I and II are among the main endothelial plasmalemma-associated proteins forming early glucose adducts in experimental diabetes. Diabetes 50, 1666–1674 (2001).

    CAS  PubMed  Google Scholar 

  124. 124

    Rand, J. H. Antiphospholipid antibody-mediated disruption of the annexin V antithrombotic shield: a thrombogenetic mechanism for the antiphospholipid syndrome. J. Autoimmun. 15, 107–111 (2000).

    CAS  PubMed  Google Scholar 

  125. 125

    Kretsinger, R. H. Structure and evolution of calcium modulated proteins. CRC Crit. Rev. Biochem. 8, 119–174 (1980).

    CAS  PubMed  Google Scholar 

  126. 126

    Jahn, R., Lang, T. & Sudhof, T. C. Membrane fusion. Cell 112, 519–533 (2003).

    CAS  PubMed  Google Scholar 

  127. 127

    Huber, R. et al. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J. Mol. Biol. 223, 683–704 (1992).

    CAS  PubMed  Google Scholar 

  128. 128

    Burger, A. et al. The crystal structure and ion channel activity of human annexin II, a peripheral membrane protein. J. Mol. Biol. 257, 839–847 (1996).

    CAS  PubMed  Google Scholar 

  129. 129

    Sopkova-de Oliveira Santos, J. et al. S100 protein–annexin interactions: a model of the (Anx2–p11)2 heterotetramer complex. Biochim. Biophys. Acta 1498, 181–191 (2000).

    CAS  PubMed  Google Scholar 

  130. 130

    Oling, F., Bergsma-Schutter, W. & Brisson, A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin a5 two-dimensional crystals. J. Struct. Biol. 133, 55–63 (2001).

    CAS  PubMed  Google Scholar 

Download references


We thank our colleagues who provided unpublished information and materials that were used in the figures, and apologize to all those researchers whose work could not be discussed owing to space limitations. Work in the authors' laboratories is supported by: the Deutsche Forschungsgemeinschaft, the Interdisciplinary Center for Clinical Research of the Münster Medical School, and the European Union (V.G.); the National Institutes of Health (C.E.C.); and the Wellcome Trust, the Medical Research Council and Fight for Sight (S.E.M.).

Author information



Corresponding author

Correspondence to Volker Gerke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links






annexin A1

annexin A2

annexin A4

annexin A5

annexin A6

annexin A7

annexin A10

annexin A11

annexin A13

annexin B12







Volker Gerke's laboratory



Annexin B12 is the predominant annexin in the freshwater cnidarian Hydra vulgaris, and has been the prototype for biophysical studies on annexin insertion into phospholipid bilayers.


The largest family of Ca2+-binding proteins, which is exemplified by calmodulin. The family members share a structural helix–loop–helix motif — the EF hand — that forms the Ca2+-binding site.


A family of 1014–kDa, EF-hand-containing Ca2+-binding proteins, which transmit Ca2+-dependent cell-regulatory signals.


Proteins that contain a pleckstrin-homology domain, which is a conserved motif that is most frequently associated with binding to inositol phospholipids.


A localized membrane region that differs from the surrounding membrane in its lipid composition and order.


Lateral lipid aggregates that are rich in cholesterol and sphingolipids, and are thought to occur in cellular membranes. These lipid microdomains are resistant to solubilization by non-ionic detergents and probably resemble the liquid-ordered domains that are found in model membranes.


The final stage of the cell-division cycle, in which two daughter cells become separated by the central spindle.


A dense protein matrix that forms at the midpoint of the central spindle during cytokinesis. Midbody proteins, of which annexin A11 is one, are required for cleavage-furrow formation and the final separation of daughter cells by abscission.

P6 OR P3

Space groups that define crystal lattices with sixfold and threefold axes of symmetry, respectively.


The part of the nucleus that is contained by, but is distinct from, the nuclear envelope.


A crystalline form of calcium phosphate that is present in the matrix of bone.


The secretory vesicles of the adrenal medulla. They contain noradrenaline or adrenaline, a number of biologically active peptides and high concentrations of ATP and ascorbic acid. The name is derived from the histological observation that the vesicles are readily stained by chromium salts.


A highly unsaturated, long-chain fatty acid (20 carbon atoms: 4 double bonds) that is often found at the sn-2 position of the glycerol backbone of membrane phospholipids. It is typically released by phospholipase action in stimulated cells, which allows it to function as a membrane fusogen or as the precursor of active signalling molecules such as the prostaglandins and leukotrienes.


(soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor proteins). Integral membrane proteins in vesicle or cell-surface membranes that interact with one another during membrane fusion. The name is derived from the role of these proteins as receptors for a cytosolic protein, NSF, that is essential for organelle trafficking steps that involve membrane fusion.


An isoform of spectrin that is sometimes also called fodrin and is expressed in cells other than erythrocytes.


A class of steroid hormones with a potent anti-inflammatory activity.


The processs by which neutrophils (polymorphonuclear leukocytes) leave a blood vessel.


Inflammation of the peritoneum (the membrane that lines the abdominal cavity and digestive organs of vertebrates).


The defense reaction of an organism to infectious or toxic agents, which helps to restrict organ damage through the cytokine-induced production of protective acute-phase proteins such as complement-reactive and serum-amyloid protein.


A commonly used cell line that is derived from an acute lymphoblastic leukaemia of T-cell origin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gerke, V., Creutz, C. & Moss, S. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6, 449–461 (2005).

Download citation

Further reading