Focal adhesion kinase: in command and control of cell motility

Key Points

  • In 1992, focal adhesion kinase (FAK) was identified as a substrate for viral Src and as a highly tyrosine-phosphorylated protein that localized to cell adhesion sites known as focal contacts. Since then, FAK has been shown to have a key role in both normal and tumour cell migration downstream of growth factor- and integrin- receptors. It is the formation of a FAK–Src signalling complex that is an initial and important event required for maximal FAK activation and cell migration.

  • FAK can be activated through intermolecular and intramolecular mechanisms, and tyrosine-phosphorylated FAK promotes interactions with various Src-homology (SH)2- and SH3-containing proteins. These proteins allow FAK activation to be connected to several signalling pathways such as the extracellular signal-regulated kinase 2 (ERK2)/mitogen-activated protein kinase (MAPK) cascade and small GTPases such as Rac and Rho. Phosphorylation of the C-terminal domain of FAK might control its localization to focal contacts by altering the binding of paxillin.

  • FAK functions as a signalling-protein scaffold for the assembly and subsequent maturation of focal contacts. FAK–Src kinase activity contributes to these events by promoting signalling that leads to the phosphorylation of phosphatidylinositol lipids. FAK–Src also functions to promote the disassembly of focal contacts, in part by activating intracellular proteases such as calpain and extracellular matrix metalloproteinases. New findings also link FAK–Src signalling to the regulation of cadherin-mediated cell–cell contacts.

  • In cell protrusions of migrating cells, coordinated changes in actin and microtubule structures are regulated by FAK signalling to Rho-family GTPases. FAK binds to and can phosphorylate GTPase-activating proteins (GAPs) and guanine nucleotide-exchange factors (GEFs) for Rho, and neuronal Wiskott–Aldrich syndrome protein (N-WASP), and can exert control over actin crosslinking by phosphorylating α-actinin.

  • The receptor-proximal position of FAK facilitates its role as an integrator of biochemical signals and mechanical forces that are experienced by moving cells. It is in this unique signalling position that FAK can regulate cytoskeletal or cell adhesion site dynamics and thereby control cell motility.


A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility. Focal adhesion kinase (FAK) is a crucial signalling component that is activated by numerous stimuli and functions as a biosensor or integrator to control cell motility. Through multifaceted and diverse molecular connections, FAK can influence the cytoskeleton, structures of cell adhesion sites and membrane protrusions to regulate cell movement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Focal adhesion kinase integrates signals to promote cell migration.
Figure 2: Focal adhesion kinase domain structure and phosphorylation sites.
Figure 3: Focal adhesion kinase (FAK)–Src signals that regulate cell motility and focal contact localization.
Figure 4: Focal adhesion kinase promotes cytoskeletal fluidity.
Figure 5: Focal adhesion kinase influences phospholipid and microtubule structures.


  1. 1

    Brakebusch, C. & Fassler, R. The integrin–actin connection, an eternal love affair. EMBO J. 22, 2324–2333 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582 (2003).

    CAS  PubMed  Google Scholar 

  3. 3

    Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  Google Scholar 

  4. 4

    Parsons, J. T. Focal adhesion kinase: the first ten years. J. Cell Sci. 116, 1409–1416 (2003). Provides a good overview of the early studies on FAK.

    CAS  Google Scholar 

  5. 5

    Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995). Shows that null mutation of FAK results in defects in embryonic morphogenesis, and that FAK-null cells show enhanced focal-contact formation and cell motility defects in culture.

    CAS  Google Scholar 

  6. 6

    Webb, D. J. et al. FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

    CAS  Google Scholar 

  7. 7

    Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004). Provides evidence that FAK promotes cell polarization through the stabilization of microtubules at leading edges of motile cells.

    CAS  PubMed  Google Scholar 

  8. 8

    Ren, X. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).

    CAS  Google Scholar 

  9. 9

    Agochiya, M. et al. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 18, 5646–5653 (1999).

    CAS  Google Scholar 

  10. 10

    Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA 98, 13790–13795 (2001).

    CAS  PubMed  Google Scholar 

  11. 11

    Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Cance, W. G. et al. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin. Cancer Res. 6, 2417–2423 (2000).

    CAS  Google Scholar 

  13. 13

    Ilic, D. et al. Focal adhesion kinase is required for blood vessel morphogenesis. Circ. Res. 92, 300–307 (2003).

    CAS  PubMed  Google Scholar 

  14. 14

    Haskell, H. et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin. Cancer Res. 9, 2157–2165 (2003).

    CAS  Google Scholar 

  15. 15

    Hauck, C. R., Hsia, D. A., Ilic, D. & Schlaepfer, D. D. v-Src SH3-enhanced interaction with focal adhesion kinase at β1 integrin-containing invadopodia promotes cell invasion. J. Biol. Chem. 277, 12487–12490 (2002).

    CAS  Google Scholar 

  16. 16

    Hauck, C. R., Hsia, D. A., Puente, X. S., Cheresh, D. A. & Schlaepfer, D. D. FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. EMBO J. 21, 6289–6302 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hsia, D. A. et al. Differential regulation of cell motility and invasion by FAK. J. Cell Biol. 160, 753–767 (2003). This reference, together with reference 69, shows that constitutively active Src can bypass the need for FAK in promoting the turnover of focal contacts.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Schlaepfer, D. D., Mitra, S. K. & Ilic, D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta 1692, 77–102 (2004). Provides a solid review on the role of FAK during embryonic development.

    CAS  Google Scholar 

  19. 19

    Yano, H. et al. Roles played by a subset of integrin signaling molecules in cadherin-based cell–cell adhesion. J. Cell Biol. 166, 283–295 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Katsumi, A., Orr, A. W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem. 279, 12001–12004 (2004).

    CAS  PubMed  Google Scholar 

  21. 21

    Carragher, N. O., Westhoff, M. A., Fincham, V. J., Schaller, M. D. & Frame, M. C. A novel role for FAK as a protease-targeting adaptor protein. Regulation by p42 ERK and Src. Curr. Biol. 13, 1442–1450 (2003).

    CAS  Google Scholar 

  22. 22

    Hauck, C. R. et al. Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res. 61, 7079–7090 (2001).

    CAS  PubMed  Google Scholar 

  23. 23

    Sieg, D. J. et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biol. 2, 249–256 (2000).

    CAS  Google Scholar 

  24. 24

    Streblow, D. N. et al. Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J. Biol. Chem. 278, 50456–50465 (2003). Together with reference 23, this paper shows that the FAK FERM domain has important roles in promoting growth-factor-stimulated and G-protein-stimulated cell motility.

    CAS  PubMed  Google Scholar 

  25. 25

    Chen, R. et al. Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nature Cell Biol. 3, 439–444 (2001).

    CAS  PubMed  Google Scholar 

  26. 26

    Poullet, P. et al. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell–matrix adhesion. J. Biol. Chem. 276, 37686–37691 (2001).

    CAS  PubMed  Google Scholar 

  27. 27

    Kadare, G. et al. PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation. J. Biol. Chem. 278, 47434–47440 (2003). Shows that sumoylation of FAK within the FERM domain is associated with catalytic activation and preferential nuclear localization.

    CAS  PubMed  Google Scholar 

  28. 28

    Jones, G. & Stewart, G. Nuclear import of N-terminal FAK by activation of the FcεRI receptor in RBL-2H3 cells. Biochem. Biophys. Res. Comm. 314, 39–45 (2004).

    CAS  PubMed  Google Scholar 

  29. 29

    McKean, D. M. et al. FAK induces expression of Prx1 to promote tenascin-C-dependent fibroblast migration. J. Cell Biol. 161, 393–402 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Zhao, J. et al. Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol. Cell 11, 1503–1515 (2003).

    CAS  PubMed  Google Scholar 

  31. 31

    Hanks, S. K., Ryzhova, L., Shin, N. Y. & Brabek, J. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front. Biosci. 8, 982–996 (2003).

    Google Scholar 

  32. 32

    Chodniewicz, D. & Klemke, R. L. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim. Biophys. Acta. 1692, 63–76 (2004).

    CAS  PubMed  Google Scholar 

  33. 33

    Schaller, M. D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta. 1540, 1–21 (2001).

    CAS  PubMed  Google Scholar 

  34. 34

    Zhai, J. et al. Direct interaction of focal adhesion kinase with p190RhoGEF. J. Biol. Chem. 278, 24865–24873 (2003). Together with reference 79, shows that FAK can directly activate Rho through binding and phosphorylation of a GEF, and that this activation regulates axonal branching.

    CAS  Google Scholar 

  35. 35

    Toutant, M. et al. Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol. Cell. Biol. 22, 7731–7743 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Liu, E., Cote, J. F. & Vuori, K. Negative regulation of FAK signaling by SOCS proteins. EMBO J. 22, 5036–5046 (2003). This paper established a link between FAK activation, phosphorylation of Tyr397 and subsequent degradation of FAK.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Avraham, H., Park, S. Y., Schinkmann, K. & Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell. Signal 12, 123–133 (2000).

    CAS  PubMed  Google Scholar 

  38. 38

    Klingbeil, C. K. et al. Targeting Pyk2 to β1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J. Cell Biol. 152, 97–110 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Lim, Y. et al. Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J. Biol. Chem. 279, 29060–29065 (2004).

    CAS  Google Scholar 

  40. 40

    Gabarra-Niecko, V., Keely, P. J. & Schaller, M. D. Characterization of an activated mutant of focal adhesion kinase: 'SuperFAK'. Biochem. J. 365, 591–603 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Nowakowski, J. et al. Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure (Camb.) 10, 1659–1667 (2002).

    CAS  Google Scholar 

  42. 42

    Abbi, S. et al. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol. Biol. Cell 13, 3178–3191 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Medley, Q. G. et al. Signaling between focal adhesion kinase and Trio. J. Biol. Chem. 278, 13265–13270 (2003).

    CAS  PubMed  Google Scholar 

  44. 44

    Cooper, L. A., Shen, T. L. & Guan, J. L. Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol. Cell. Biol. 23, 8030–8041 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Zeng, L. et al. PTPα regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration. J. Cell Biol. 160, 137–146 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Chiarugi, P. et al. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Biol. 161, 933–944 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Arias-Salgado, E. G. et al. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc. Natl Acad. Sci. USA 100, 13298–13302 (2003). Shows that selected β-integrin subunits can bind and activate Src in the absence of a contribution from FAK.

    CAS  PubMed  Google Scholar 

  48. 48

    Turner, C. E. Paxillin and focal adhesion signalling. Nature Cell Biol. 2, 231–236 (2000).

    Google Scholar 

  49. 49

    Cho, S. Y. & Klemke, R. L. Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J. Cell Biol. 156, 725–736 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Brabek, J. et al. CAS promotes invasiveness of Src-transformed cells. Oncogene 23, 7406–7415 (2004).

    CAS  PubMed  Google Scholar 

  51. 51

    Schaller, M. D. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459–6472 (2001).

    CAS  Google Scholar 

  52. 52

    Subauste, M. C. et al. Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility. J. Cell Biol. 165, 371–381 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Hayashi, I., Vuori, K. & Liddington, R. C. The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nature Struct. Biol. 9, 101–106 (2002).

    CAS  PubMed  Google Scholar 

  54. 54

    Liu, G., Guibao, C. D. & Zheng, J. Structural insight into the mechanisms of targeting and signaling of focal adhesion kinase. Mol. Cell. Biol. 22, 2751–2760 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Gao, G. et al. NMR solution structure of the focal adhesion targeting domain of focal adhesion kinase in complex with a paxillin LD peptide: evidence for a two-site binding model. J. Biol. Chem. 279, 8441–8451 (2004).

    CAS  PubMed  Google Scholar 

  56. 56

    Katz, B. Z. et al. Targeting membrane-localized focal adhesion kinase to focal adhesions: roles of tyrosine phosphorylation and SRC family kinases. J. Biol. Chem. 278, 29115–29120 (2003).

    CAS  Google Scholar 

  57. 57

    Prutzman, K. C. et al. The focal adhesion targeting domain of focal adhesion kinase contains a hinge region that modulates tyrosine 926 phosphorylation. Structure (Camb.) 12, 881–891 (2004). References 53, 54, 55 and 57 provide structural analyses of the FAK FAT domain and the paxillin LD peptide binding, and show that Tyr925 phosphorylation might require conformational alterations in the FAT domain.

    CAS  Google Scholar 

  58. 58

    Ma, A., Richardson, A., Schaefer, E. M. & Parsons, J. T. Serine phosphorylation of focal adhesion kinase in interphase and mitosis: a possible role in modulating binding to p130Cas. Mol. Biol. Cell 12, 1–12 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Hunger-Glaser, I., Fan, R. S., Perez-Salazar, E. & Rozengurt, E. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J. Cell Physiol. 200, 213–222 (2004).

    CAS  PubMed  Google Scholar 

  60. 60

    Liu, Z. X., Yu, C. F., Nickel, C., Thomas, S. & Cantley, L. G. Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin–focal adhesion kinase association. J. Biol. Chem. 277, 10452–10458 (2002).

    CAS  PubMed  Google Scholar 

  61. 61

    Ishibe, S., Joly, D., Zhu, X. & Cantley, L. G. Phosphorylation-dependent paxillin–ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol. Cell 12, 1275–1285 (2003).

    CAS  PubMed  Google Scholar 

  62. 62

    Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. & Geiger, B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J. Cell Sci. 116, 975–986 (2003).

    CAS  PubMed  Google Scholar 

  63. 63

    Zaidel-Bar, R., Ballestrem, C., Kam, Z. & Geiger, B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116, 4605–4613 (2003).

    CAS  PubMed  Google Scholar 

  64. 64

    Sieg, D. J., Hauck, C. R. & Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112, 2677–2691 (1999).

    CAS  Google Scholar 

  65. 65

    Rajfur, Z., Roy, P., Otey, C., Romer, L. & Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nature Cell Biol. 4, 286–293 (2002).

    CAS  PubMed  Google Scholar 

  66. 66

    Izaguirre, G. et al. The cytoskeletal/non-muscle isoform of α-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase. J. Biol. Chem. 276, 28676–28685 (2001).

    CAS  PubMed  Google Scholar 

  67. 67

    Yu, D. H., Qu, C. K., Henegariu, O., Lu, X. & Feng, G. S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273, 21125–21131 (1998).

    CAS  PubMed  Google Scholar 

  68. 68

    Von Wichert, G., Haimovich, B., Feng, G. S. & Sheetz, M. P. Force-dependent integrin–cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 22, 5023–5035 (2003). Together with reference 67, this study shows that null mutation of SHP2 results in FAK hyperactivation, elevated α-actinin phosphorylation, and the failure to promote the maturation of integrin–cytoskeletal linkages.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Moissoglu, K. & Gelman, I. H. v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts. J. Biol. Chem. 278, 47946–47959 (2003).

    CAS  Google Scholar 

  70. 70

    Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Bhatt, A., Kaverina, I., Otey, C. & Huttenlocher, A. Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J. Cell Sci. 115, 3415–3425 (2002).

    CAS  PubMed  Google Scholar 

  72. 72

    Dourdin, N. et al. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J. Biol. Chem. 276, 48382–48388 (2001).

    CAS  PubMed  Google Scholar 

  73. 73

    Cuevas, B. D. et al. MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J. 22, 3346–3355 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. & Carragher, N. O. Src-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol. Cell. Biol. 24, 8113–8133 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Giannone, G. et al. Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions. J. Biol. Chem. 279, 28715–28723 (2004).

    CAS  PubMed  Google Scholar 

  76. 76

    Hecker, T. P., Ding, Q., Rege, T. A., Hanks, S. K. & Gladson, C. L. Overexpression of FAK promotes Ras activity through the formation of a FAK/p120RasGAP complex in malignant astrocytoma cells. Oncogene 23, 3962–3971 (2004).

    CAS  Google Scholar 

  77. 77

    Chen, B. H., Tzen, J. T., Bresnick, A. R. & Chen, H. C. Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J. Biol. Chem. 277, 33857–33863 (2002).

    CAS  Google Scholar 

  78. 78

    Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Rico, B. et al. Control of axonal branching and synapse formation by focal adhesion kinase. Nature Neurosci. 7, 1059–1069 (2004).

    CAS  PubMed  Google Scholar 

  80. 80

    Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem. 279, 9565–9576 (2004).

    CAS  Google Scholar 

  81. 81

    Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    CAS  PubMed  Google Scholar 

  82. 82

    Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol. 16, 106–112 (2004).

    CAS  Google Scholar 

  83. 83

    del Pozo, M. A. et al. Integrins regulate Rac targeting by internalization of membrane domains. Science 303, 839–842 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Slack-Davis, J. K. et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J. Cell Biol. 162, 281–291 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Xie, Z. et al. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114, 469–482 (2003).

    CAS  PubMed  Google Scholar 

  87. 87

    Ivankovic-Dikic, I., Gronroos, E., Blaukat, A., Barth, B. -U. & Dikic, I. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nature Cell Biol. 2, 574–581 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Calderwood, D. A. Integrin activation. J. Cell Sci. 117, 657–666 (2004).

    CAS  PubMed  Google Scholar 

  89. 89

    Papagrigoriou, E. et al. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J. 23, 2942–2951 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin. Nature 420, 85–89 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Barsukov, I. L. et al. Phosphatidylinositol phosphate kinase type 1γ and β1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J. Biol. Chem. 278, 31202–31209 (2003).

    CAS  PubMed  Google Scholar 

  93. 93

    Ling, K. et al. Tyrosine phosphorylation of type Iγ phosphatidylinositol phosphate kinase by Src regulates an integrin–talin switch. J. Cell Biol. 163, 1339–1349 (2003). Together with references 91 and 92, this reference shows that FAK–Src phosphorylation events function to control the composition of membrane lipids and the dynamics of focal contacts.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Wheelock, M. J. & Johnson, K. R. Cadherins as modulators of cellular phenotype. Ann. Rev. Cell Dev. Biol. 19, 207–235 (2003).

    CAS  Google Scholar 

  95. 95

    Irby, R. B. & Yeatman, T. J. Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res. 62, 2669–2674 (2002).

    CAS  PubMed  Google Scholar 

  96. 96

    Avizienyte, E. et al. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nature Cell Biol. 4, 632–638 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Quadri, S. K., Bhattacharjee, M., Parthasarathi, K., Tanita, T. & Bhattacharya, J. Endothelial barrier strengthening by activation of focal adhesion kinase. J. Biol. Chem. 278, 13342–13349 (2003).

    CAS  Google Scholar 

  98. 98

    Miranti, C. K. & Brugge, J. S. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biol. 4, E83–E90 (2002).

    CAS  PubMed  Google Scholar 

  99. 99

    Li, S. et al. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl Acad. Sci. USA 99, 3546–3551 (2002).

    CAS  PubMed  Google Scholar 

  100. 100

    Wang, H. B., Dembo, M., Hanks, S. K. & Wang, Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98, 11295–11300 (2001). Shows that FAK functions as an important environmental biosensor in promoting directional motility signals in response to changes in substrate flexibility.

    CAS  PubMed  Google Scholar 

  101. 101

    Owen, J. D., Ruest, P. J., Fry, D. W. & Hanks, S. K. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol. Cell. Biol. 19, 4806–4818 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Cukierman, E., Pankov, R. & Yamada, K. M. Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–639 (2002).

    CAS  PubMed  Google Scholar 

  103. 103

    Ilic, D. et al. FAK promotes organization of fibronectin matrix and fibrillar adhesions. J. Cell Sci. 117, 177–187 (2004).

    CAS  Google Scholar 

  104. 104

    Beggs, H. E. et al. FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron 40, 501–514 (2003). References 103 and 104 show that FAK has crucial roles in promoting 3D-matrix assembly and/or remodelling during development and in cell culture model systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  PubMed  Google Scholar 

  106. 106

    Xia, H., Nho, R. S., Kahm, J., Kleidon, J. & Henke, C. A. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a β1 integrin viability signaling pathway. J. Biol. Chem. 279, 33024–33034 (2004).

    CAS  PubMed  Google Scholar 

  107. 107

    Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163, 583–595 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Ilic, D. et al. Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am. J. Pathol. 159, 93–108 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Bowden, E. T., Coopman, P. J. & Mueller, S. C. Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol. 63, 613–627 (2001).

    CAS  PubMed  Google Scholar 

  110. 110

    Hauck, C. R., Hunter, T. & Schlaepfer, D. D. The v-Src SH3 domain facilitates a cell adhesion-independent association with focal adhesion kinase. J. Biol. Chem. 276, 17653–17662 (2001).

    CAS  PubMed  Google Scholar 

  111. 111

    Stewart, A., Ham, C. & Zachary, I. The focal adhesion kinase amino-terminal domain localises to nuclei and intercellular junctions in HEK 293 and MDCK cells independently of tyrosine 397 and the carboxy-terminal domain. Biochem. Biophys. Res. Comm. 299, 62–73 (2002).

    CAS  PubMed  Google Scholar 

  112. 112

    Chen, H. C., Appeddu, P. A., Isoda, H. & Guan, J. L. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem. 271, 26329–26334 (1996).

    CAS  PubMed  Google Scholar 

  113. 113

    Calderwood, D. A. & Ginsberg, M. H. Talin forges the links between integrins and actin. Nature Cell Biol. 5, 694–697 (2003).

    CAS  PubMed  Google Scholar 

  114. 114

    Zheng, C. et al. Differential regulation of Pyk2 and focal adhesion kinase (FAK). J. Biol. Chem. 273, 2384–2389 (1998).

    CAS  PubMed  Google Scholar 

  115. 115

    Wang, Q. et al. Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin. J. Cell Biol. 160, 565–575 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Sieg, D. J. et al. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK cell migration. EMBO J. 17, 5933–5947 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Lakkakorpi, P. T., Bett, A. J., Lipfert, L., Rodan, G. A. & Duong, L. T. Pyk2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J. Biol. Chem. 278, 11502–11512 (2003).

    CAS  PubMed  Google Scholar 

  118. 118

    Lev, S. et al. Identification of a novel family of targets of Pyk2 related to Drosophila retinal degeneration B (rdgB) protein. Mol. Cell. Biol. 19, 2278–2288 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Benbernou, N., Muegge, K. & Durum, S. K. Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Rα. J. Biol. Chem. 275, 7060–7065 (2000).

    CAS  Google Scholar 

  120. 120

    Okigaki, M. et al. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc. Natl Acad. Sci. USA 100, 10740–10745 (2003). Shows that null mutation of the FAK-related kinase PYK2 results in integrin and chemokine-stimulated motility defects of macrophages that are not functionally compensated by FAK expression.

    CAS  PubMed  Google Scholar 

  121. 121

    Watson, J. M. et al. Inhibition of the calcium-dependent tyrosine kinase (CADTK) blocks monocyte spreading and motility. J. Biol. Chem. 276, 3536–3542 (2001).

    CAS  PubMed  Google Scholar 

  122. 122

    Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2000).

    CAS  Google Scholar 

  123. 123

    Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Honda, H. et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src- induced transformation in mice lacking p130Cas. Nature Genet. 19, 361–365 (1998).

    CAS  PubMed  Google Scholar 

  125. 125

    Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol. 22, 901–915 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


S. Mitra is supported by a fellowship from the California Tobacco-Related Disease Research Program and D. Schlaepfer is supported by grants from the National Cancer Institute. This is manuscript 16827-IMM from The Scripps Research Institute.

Author information



Corresponding author

Correspondence to David D. Schlaepfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Entrez Gene























The Schlaepfer laboratory



A large family of heterodimeric transmembrane proteins that function as receptors for cell-adhesion molecules.


(ECM). The complex, multi-molecular material that surrounds cells. The ECM comprises a scaffold on which tissues are organized, it provides cellular microenvironments and it regulates various cellular functions.


A subfamily of small (21 kDa) GTP-binding proteins that are related to Ras and that regulate the cytoskeleton. The nucleotide-bound state is regulated by GTPase-activating proteins, which catalyse hydrolysis of the bound GTP, and guanine nucleotide-exchange factors, which catalyse GDP–GTP exchange.


Also termed 'actin-microfilament bundles', these are bundles of parallel filaments that contain F-actin and other contractile molecules, and often stretch between cell attachments as if under stress.


Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments.


An established tissue-culture strain of human epidermoid carcinoma cells, containing 70–80 chromosomes per cell. These cells were originally derived from tissue taken from a patient named Henrietta Lacks in 1951.


Proteins that augment cellular responses by recruiting other proteins to a complex. They usually contain several protein–protein interaction domains.


A seven-helix membrane-spanning cell-surface receptor that signals through heterotrimeric GTP-binding and GTP-hydrolysing G-proteins to stimulate or inhibit the activity of a downstream enzyme.


A protein sequence of 50 amino acids that recognizes and binds sequences that are rich in proline.


(GAP). A protein that stimulates the intrinsic ability of a GTPase to hydrolyse GTP to GDP. Therefore, GAPs negatively regulate GTPases by converting them from active (GTP-bound) to inactive (GDP-bound).


The transfer of a phosphate group by a protein kinase either to a residue in the same kinase molecule (cis) or to a residue in a different kinase molecule but of the same type (trans).


A protein motif that recognizes and binds tyrosine-phosphorylated sequences, and thereby has a key role in relaying cascades of signal transduction.


Kinases that belong to the Src family of tyrosine kinases, the largest of the non-receptor-tyrosine-kinase families.


A region in the spleen in which white blood cell precursors such as B-cells, granulocytes, macrophages and plasma-cells reside or transit through during primary or secondary immune responses.


A conserved structural motif in kinase domains, which needs to be phosphorylated for full activation of the kinase.


A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.


A process that is formed by the movement of lamellipodia that are in the dynamic process of folding back onto the cell body from which they previously extended.


A short sequence found within proteins that has the consensus sequence LDXLLXXL and functions as a protein-binding interface.


Proteolytic enzymes that degrade the extracellular matrix and have important roles in tissue remodelling and tumour metastasis.


The thin margin of a lamellipodium that spans the area of the cell from the plasma membrane to a depth of about 1 μm into the lamellipodium.


A complex that consists of two actin-related proteins ARP2 and ARP3, along with five smaller proteins. When activated, the ARP2/3 complex binds to the side of an existing actin filament and nucleates the assembly of a new actin filament. The resulting branch structure is Y-shaped.


An anionic glycosphingolipid that carries, in addition to other sugar residues, one or more sialic acid residues.


Lateral aggregates of cholesterol and sphingomyelin that are thought to occur in the plasma membrane.


A cell–cell adhesion complex that contains classical cadherins and catenins that are attached to cytoplasmic actin filaments.


A circumferential ring at the apex of epithelial cells that seals adjacent cells to one another. Tight junctions regulate solute and ion flux between adjacent epithelial cells.


A defective protein that retains interaction capabilities and so competes with normal proteins, thereby impairing protein function.


A planar force exerted by the friction of a flowing substance — for example, forces experienced by endothelial cells as blood flows through capillaries.


The inner trophoblastic layer of cells that give rise to the syncytiotrophoblast facing the maternal circulation and constitute a layer through which all substances must pass from the mother to the fetus.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitra, S., Hanson, D. & Schlaepfer, D. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56–68 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing