Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Tackling the challenges of interdisciplinary bioscience

Abstract

The ultimate goal for biology is to become a science that formulates our understanding of subcellular, cellular and multicellular systems in terms of quantitative, holistic models that are underpinned by the rigorous principles of the physical sciences and mathematics. This can only be achieved through interdisciplinary research that draws heavily on the expertise and technologies of the physical sciences, engineering, computation and mathematics. Here, I discuss the benefits and challenges (both intellectual and practical) of interdisciplinary bioscience.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mixture of disciplines that contribute to quantitative bioscience.

References

  1. von Goethe, J. W. Faust, eine Tragõdie. (C. H. Beck, München, 1989).

    Google Scholar 

  2. Schreiber, S. L. The small-molecule approach to biology. Chem. Eng. News 80, 51–61 (2003).

    Article  Google Scholar 

  3. Henry, C. M. Systems biology. Chem. Eng. News 81, 45–55 (2003).

    Article  Google Scholar 

  4. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  Google Scholar 

  5. Barabási, A. -L. & Bonabeau, E. Scale-free networks. Sci. Am. 288, 50–59 (2003).

    Article  Google Scholar 

  6. Oltvai, Z. N. & Barabási, A. -L. Life's complexity pyramid. Science 298, 763–764 (2002).

    Article  CAS  Google Scholar 

  7. Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biol. 2, 718–723 (2000).

    Article  CAS  Google Scholar 

  8. Rief, M. et al. Myosin V stepping kinetics: a molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000).

    Article  CAS  Google Scholar 

  9. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  Google Scholar 

  10. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  11. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000).

    Article  CAS  Google Scholar 

  12. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  Google Scholar 

  13. Tinoco, I. Jr & Bustamante, C. The effect of force on thermodynamics and kinetics of single molecule reactions. Biophys. Chem. 101, 513–533 (1999).

    Google Scholar 

  14. Fisher, M. E. & Kolomeisky, A. B. The force exerted by a molecular motor. Proc. Natl Acad. Sci. USA 96, 6597–6602 (1999).

    Article  CAS  Google Scholar 

  15. Gershon, D. Laying a firm foundation for interdisciplinary research endeavours. Nature 406, 107–108 (2000).

    Article  CAS  Google Scholar 

  16. Aldhous, P. Postgenomics: Harvard's melting pot. Nature 416, 256–257 (2002).

    Article  CAS  Google Scholar 

  17. Hoag, H. All systems go. Nature 427, 568–569 (2004).

    Article  CAS  Google Scholar 

  18. Chien, K. & Chien, L. The new silk road. Nature 428, 208–209 (2004).

    Article  CAS  Google Scholar 

  19. Hooke, R. Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon. (Royal Society Press, London, 1665).

    Book  Google Scholar 

  20. Chapman, A. England's Leonardo: Robert Hooke (1635–1703) and the art of experiment in Restoration England. Proc. R. Inst. G. Br. 67, 239–275 (1996).

    Google Scholar 

  21. Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Article  CAS  Google Scholar 

  22. Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  23. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  Google Scholar 

  24. Ishii, D. et al. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632 (2003).

    Article  CAS  Google Scholar 

  25. Mao, C., LaBean, T. H., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407, 493–496 (2000).

    Article  CAS  Google Scholar 

  26. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z. & Shapiro, E. DNA molecule provides a computing machine with both data and fuel. Proc. Natl Acad. Sci. USA 100, 2191–2196 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Biotechnology and Biological Sciences Research Council, the Engineering and Physical Sciences Research Council, the Medical Research Council and the Wellcome Trust for the support of his research, the Royal Society and the Wolfson Foundation for a Research Merit award, and the Wellcome Trust and the Wolfson Foundation for the generous support of the Manchester Interdisciplinary Biocentre (MIB). He would also like to thank the Royal Society and the Royal Society of Chemistry for their ongoing support of interdisciplinary research. The author is affiliated to the University of Manchester Institute of Science and Technology (UMIST), which merged with the University of Manchester in October 2004.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Biotechnology and Biological Sciences Research Council

Engineering and Physical Sciences Research Council

European Science Foundation

Foresight Institute — preparing for nanotechnology

Industrial Technology Research Institute, Taiwan

Institut Curie

Institute of Physics

Max-Planck-Gesellschaft

Max-Planck-Institut für Dynamik komplexer technischer Systeme

Manchester Interdisciplinary Biocentre

Medical Research Council

Nanobiotechnology Center

Nano-Science Center, University of Copenhagen

Office of Science and Technology (UK)

Research Councils UK

Royal Society of Chemistry

Royal Academy of Engineering

Systeme des Lebens — Systembiologie

The Royal Society

The Wellcome Trust

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, J. Tackling the challenges of interdisciplinary bioscience. Nat Rev Mol Cell Biol 5, 933–937 (2004). https://doi.org/10.1038/nrm1501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing