Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolite profiling: from diagnostics to systems biology


The concept of metabolite profiling has been around for several decades, but only recent technical innovations have allowed metabolite profiling to be carried out on a large scale — with respect to both the number of metabolites measured and the number of experiments carried out. As a result, the power of metabolite profiling as a technology platform for diagnostics, and the research areas of gene-function analysis and systems biology, is now beginning to be fully realized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The trade-off between metabolic coverage and the quality of metabolic analysis.
Figure 2: Overexpression and metabolite profiling at the transgenomic level.


  1. 1

    Harrigan, G. G. & Goodacre, R. (eds). Metabolic Profiling: Its Role in Biomarker Discovery and Gene Functional Analysis (Kluwer Academic, Boston, 2003).

    Book  Google Scholar 

  2. 2

    Fiehn, O. Metabolomics. The link between genotype and phenotype. Plant Mol. Biol. 48, 155–171 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Kell, D. B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Roessner, U. et al. Metabolite profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Fiehn, O. et al. Metabolite profiling for plant functional genomics. Nature Biotech. 18, 1157–1161 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Halket, J. M. et al. Deconvolution gas chromatography mass spectrometry of urinary organic acids. Potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun. Mass Spectrom. 13, 279–284 (2003).

    Article  Google Scholar 

  7. 7

    Aharoni, A. et al. Terpenoid metabolism in wild type and transgenic Arabidopsis plants. Plant Cell 15, 2866–2884 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Swart, P. J. et al. HPLC-UV atmospheric-pressure ionisation mass-spectrometric determination of the dopamine-D2 agonist N-0923 and its major metabolites after oxidative metabolism by rat liver, monkey liver and human liver microsomes. Toxicology Methods 3, 279–290 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Matuszewski, B. K., Constanzer, M. L. & Chavez-Eng, C. M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 75, 3019–3030 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Plumb, R. S. et al. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun. Mass Spectrom. 17, 2632–2638 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Watkins, S. M. & German, J. B. Metabolomics and biochemical profiling in drug discovery and development. Curr. Opin. Mol. Ther. 4, 224–228 (2002).

    CAS  PubMed  Google Scholar 

  12. 12

    Aharoni, A. et al. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6, 217–234 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Soga, T. et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res. 2, 488–494 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Nobeli, I., Krissinel, E. B. & Thornton, J. M. B. A structure-based anatomy of the E. coli metabolome. J. Mol. Biol. 334, 697–719 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Hall, R. et al. Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14, 1437–1440 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Roessner-Tunali, U. et al. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol. 133, 84–99 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Walles, M. et al. Verapamil drug metabolism studies by automated in-tube solid phase microextraction. J. Pharma. Biomed. Anal. 30, 307–319 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Kok, E. J. & Kuiper, H. A. Comparative safety assessment for biotech crops. Trends Biotech. 21, 438–444 (2003).

    Article  Google Scholar 

  19. 19

    Sauter, H., Lauer, M. & Fritsch, H. Metabolite profiling of plants — a new diagnostic technique. Abstr. Pap. Am. Chem. Soc. 195, 129 (1988).

    Google Scholar 

  20. 20

    Allen, J. et al. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature Biotech. 21, 692–696 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Brindle, J. T. et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Med. 8, 1439–1444 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Huhman, D. V. & Sumner, L. W. Metabolic profiling of saponins in Medicago sativa and Medicago trunculata using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59, 347–360 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Kose, F., Weckwerth, W., Linke, T. & Fiehn, O. Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17, 1198–1208 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Aranibar, N., Singh, B. K., Stockton, G. W. & Ott, K. H. Automated mode-of-action detection by metabolic profiling. Biochem. Biophys. Res. Commun. 286, 150–155 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Quackenbush, J. Computational analysis of microarray data. Nature Rev. Genet. 2, 418–427 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Griffin, J. L. et al. NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comp. Biochem. Physiol. B 127, 357–367 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Kaderbhai, N. N., Broadhurst, D. I., Ellis, D. I., Goodacre, R. & Kell, D. B. Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp. Funct. Genomics 4, 376–391 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Rashed, M. S. et al. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm from automated flagging of abnormal profiles. Clin. Chem. 43, 1129–1141 (1997).

    CAS  PubMed  Google Scholar 

  29. 29

    Martzen, M. R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Trethewey, R. N., Krotzky, A. J. & Willmitzer, L. Metabolic profiling: a Rosetta stone for genomics? Curr. Opin. Plant Biol. 2, 83–85 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotech. 19, 45–50 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Fehr, M., Lalonde, S., Lager, I., Wolff, M. W. & Frommer, W. B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J. Biol. Chem. 278, 19127–19133 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organisation. Nature Rev. Genet. 5, 101–113 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Wagner, A. & Fell, D. A. The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268, 1803–1810 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Kacser, H. & Burns, J. A. The control of flux. Symposia Soc. Exp. Biol. 28, 65–104 (1974).

    Google Scholar 

  37. 37

    Fernie, A. R. et al. Metabolic profiling at the genome level. Plant Animal Genome Abstr. XI, W307 (2003).

    Google Scholar 

  38. 38

    Kitano, H. Perspectives on systems biology. New Generation Comput. 18, 199–216 (2000).

    Article  Google Scholar 

  39. 39

    Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotech. 19, 125–130 (1999).

    Article  Google Scholar 

  41. 41

    Baliga, N. S. et al. Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Proc. Natl Acad. Sci. USA 99, 14913–14918 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Nicholson, J. K. & Wilson, I. D. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov. 2, 668–676 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Weckwerth, W. Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Urbanczyk-Wochniak, E. et al. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Reports 4, 989–993 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Askenazi, M. et al. Integrating transcriptional and metabolite profiles to direct the engineering of Iovastatin-producing fungal strains. Nature Biotech. 21, 150–156 (2003).

    CAS  Article  Google Scholar 

  47. 47

    Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotech. 17, 994–999 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Stein, S. E. An integrated method for spectrum extraction and compound identification from GC/MS data. J. Am. Soc. Mass Spectrom. 10, 770–781 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Wagner, C., Sefkow, M. & Kopka, J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62, 887–900 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Frenzel, T., Miller, A. & Engel, K. H. A methodology for automated comparative analysis of metabolite profiling data. Eur. Food Res. Technol. 216, 335–342 (2003).

    CAS  Article  Google Scholar 

  51. 51

    Duran, A. L., Yang, J., Wang, L. & Sumner, L. W. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283–2293 (2003).

    CAS  Article  Google Scholar 

  52. 52

    Waisim, M., Hassan, M. S. & Brereton, R. G. Evaluation of chemometric methods for determining the number and position of components in high-performance liquid chromatography detected by diode array detector by diode array detector and on-flow 1H nuclear magnetic resonance spectroscopy. Analyst 128, 1082–1090 (2003).

    Article  Google Scholar 

  53. 53

    Lindon, J. C. HPLC-NMR-MS: past, present and future. Drug Discov. Today 8, 1021–1022 (2003).

    Article  Google Scholar 

  54. 54

    Meiler, J. & Will, M. Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra. J. Am. Chem. Soc. 124, 1868–1870 (2002).

    CAS  Article  Google Scholar 

Download references


The authors thank O. Schmitz for assistance in the preparation of figure 2. Software used in the preparation of figure 2 was provided by OmniViz Inc.

Author information



Corresponding author

Correspondence to Alisdair R. Fernie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links



BRENDA enzyme database


Kyoto Encyclopedia of Genes and Genomes


Max-Planck-Institut für Molekulare Pflanzenphysiologie



Paradigm Genetics



The application of statistical and computer methods to data analysis in chemistry and related scientific fields.


The smallest taxonomic subdivision of an ecospecies, which consists of populations that have adapted to a particular set of environmental conditions.


To analyse compounds effectively by mass spectrometry, they must be ionized in the gas phase. Electrospray is the most widely used atmospheric-pressure ionization technique for the sensitive, comprehensive analysis of polar and ionic compounds. Using electrospray, a strong electric field is applied to the liquid sample stream, which is then nebulized and desolvated with the assistance of a high-temperature gas flow to produce gas-phase ions.


An agglomerative statistical method that finds clusters of observations within a data set. It allows the grouping of individuals on the basis of the similarity in their properties.


The common term that is given to a range of phenomena that can occur during the ionization of complex mixtures. An important component of this is the competition between co-eluting compounds for ionization energy, which can lead to varying degrees of ionization of any individual compounds.


A statistical tool in which an orthogonal coordinate system, with axes that are ordered in terms of the amount of variance in a dataset, is produced. This allows the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations.


A quadrupole mass filter consists of four parallel metal rods. Two opposite rods have a DC voltage and the other two have an AC voltage. The applied voltages affect the trajectory of ions that travel down the flight path that is centred between the four rods, such that only ions of a certain mass-to-charge ratio pass through the quadrupole filter and all other ions are thrown out of their original path. A mass spectrum is obtained by monitoring the ions that pass through the quadrupole filter as the voltages on the rods are varied.


The concept of substantial equivalence embodies the idea that organisms that are used as foods or as food sources can serve as a basis for comparison when assessing the safety of human consumption of a food or food component that has been modified or is new.


A method that requires training with known data sets in which the types of groups expected are predefined before being applied to experimental data.


A method that does not require training with known data sets and that generates groups on the basis of the data structure in the experimental data.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernie, A., Trethewey, R., Krotzky, A. et al. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5, 763–769 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing