Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemotaxis: signalling the way forward

Key Points

  • Motile eukaryotic cells such as Dictyostelium discoideum and human neutrophils extend pseudopodia with a typical 1-minute life cycle. In a uniform gradient of chemoattractant, these pseudopodia are formed in random directions.

  • During chemotaxis in a gradient of chemoattractant, the spatial and temporal aspects of the chemoattractant concentration are processed, leading to pseudopod extension at the leading edge, retraction of the uropod at the back of the cell, and suppression of lateral pseudopodia.

  • The chemoattractant binds to seven-transmembrane-spanning serpentine receptors, and activates heterotrimeric G-proteins and small GTP-binding proteins of the Rho/Rac class, which leads to the activation of phosphatidylinositol 3-kinase (PI3K) and guanylyl cyclase.

  • At the leading edge Rho/Rac proteins are activated. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) accumulates here as a result of the activity of PI3K that translocates from the cytosol, whereas the PtdIns(3,4,5)P3-degrading enzyme PTEN (phosphatase and tensin homologue) dissociates from the membrane at the leading edge. Rho/Rac proteins and PtdIns(3,4,5)P3-binding proteins induce actin polymerization and pseudopod formation.

  • At the sides and the back of the cell, myosin filaments are formed, which generate the power to retract the uropod, and also inhibit the formation of pseudopodia at the sides of the cell. In D. discoideum this is mediated predominantly by cyclic GMP, whereas in neutrophils, a Rho kinase induces myosin filaments.

Abstract

During random locomotion, human neutrophils and Dictyostelium discoideum amoebae repeatedly extend and retract cytoplasmic processes. During directed cell migration — chemotaxis — these pseudopodia form predominantly at the leading edge in response to the local accumulation of certain signalling molecules. Concurrent changes in actin and myosin enable the cell to move towards the stimulus. Recent studies are beginning to identify an intricate network of signalling molecules that mediate these processes, and how these molecules become localized in the cell is now becoming clear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemotaxis involves three interrelated phenomena.
Figure 2: Directional sensing in immobilized cells.
Figure 3: Uniform chemoattractant increments trigger biphasic responses.
Figure 4: Myosin-II filaments in chemotaxis.

Similar content being viewed by others

References

  1. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).

    CAS  PubMed  Google Scholar 

  2. Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    CAS  PubMed  Google Scholar 

  3. Crone, S. A. & Lee, K. F. The bound leading the bound: target-derived receptors act as guidance cues. Neuron 36, 333–335 (2002).

    CAS  PubMed  Google Scholar 

  4. Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478 (2002).

    CAS  PubMed  Google Scholar 

  5. Berg, H. C. A physicist looks at bacterial chemotaxis. Cold Spring Harb. Symp. Quant. Biol. 53, 1–9 (1988).

    CAS  PubMed  Google Scholar 

  6. Bourret, R. B. & Stock, A. M. Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277, 9625–9628 (2002).

    CAS  PubMed  Google Scholar 

  7. Zigmond, S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Devreotes, P. N. & Zigmond, S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

    CAS  PubMed  Google Scholar 

  9. Weiner, O. D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol. 14, 196–202 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl Acad. Sci. USA 101, 8951–8956 (2004).

  11. Mato, J. M., Losada, A., Nanjundiah, V. & Konijn, T. M. Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 72, 4991–4993 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stock, J. Sensitivity, cooperativity and gain in chemotaxis signal transduction. Trends Microbiol. 7, 1–4 (1999).

    CAS  PubMed  Google Scholar 

  13. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  PubMed  Google Scholar 

  14. Postma, M., Bosgraaf, L., Loovers, H. M. & Van Haastert, P. J. M. Chemotaxis: signalling modules join hands at front and tail. EMBO Rep. 5, 35–40 (2004). The authors present a concept for chemotaxis based on the diffusion properties of signalling molecules, and their organization in several modules that regulate actin and myosin.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003). An excellent review on the regulation of actin filaments in motile cells by the Arp2/3 complex, profilin, capping proteins, WASP and WAVE/SCAR.

    CAS  PubMed  Google Scholar 

  16. Swanson, J. A. & Taylor, D. L. Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis. Cell 28, 225–232 (1982).

    CAS  PubMed  Google Scholar 

  17. Varnum-Finney, B., Edwards, K. B., Voss, E. & Soll, D. R. Amebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in ameboid chemotaxis. Cell Motil. Cytoskeleton 8, 7–17 (1987).

    CAS  PubMed  Google Scholar 

  18. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    CAS  PubMed  Google Scholar 

  19. Wessels, D., Vawter-Hugart, H., Murray, J. & Soll, D. R. Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. Cell Motil. Cytoskeleton 27, 1–12 (1994).

    CAS  PubMed  Google Scholar 

  20. Postma, M. et al. Uniform cAMP stimulation of Dictyostelium cells induces localized patches of signal transduction and pseudopodia. Mol. Biol. Cell 14, 5019–5027 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, L., Valkema, R., Van Haastert, P. J. & Devreotes, P. N. The G protein β subunit is essential for multiple responses to chemoattractants in Dictyostelium. J. Cell Biol. 129, 1667–1675 (1995).

    CAS  PubMed  Google Scholar 

  22. Insall, R. H., Soede, R. D., Schaap, P. & Devreotes, P. N. Two cAMP receptors activate common signaling pathways in Dictyostelium. Mol. Biol. Cell 5, 703–711 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kriebel, P. W., Barr, V. A. & Parent, C. A. Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 112, 549–560 (2003).

    CAS  PubMed  Google Scholar 

  24. Soll, D. R., Wessels, D., Heid, P. J. & Zhang, H. A contextual framework for characterizing motility and chemotaxis mutants in Dictyostelium discoideum. J. Muscle Res. Cell Motil. 23, 659–672 (2002).

    CAS  PubMed  Google Scholar 

  25. Soll, D. R. The use of computers in understanding how animal cells crawl. Int. Rev. Cytol. 163, 43–104 (1995).

    CAS  PubMed  Google Scholar 

  26. Postma, M. et al. Sensitization of Dictyostelium chemotaxis by PI3-kinase mediated self-organizing signalling patches. J. Cell Sci. 117, 2925–2935 (2004).

    CAS  PubMed  Google Scholar 

  27. Varnum, B. & Soll, D. R. Effects of cAMP on single cell motility in Dictyostelium. J. Cell Biol. 99, 1151–1155 (1984).

    CAS  PubMed  Google Scholar 

  28. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999).

    CAS  PubMed  Google Scholar 

  29. Bretschneider, T. et al. Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr. Biol. 14, 1–10 (2004).

    CAS  PubMed  Google Scholar 

  30. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nicolis, G. & Prigogine, I. Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. (John Wiley & Sons, New York, 1977).

    Google Scholar 

  32. Bourne, H. R. & Weiner, O. A chemical compass. Nature 419, 21 (2002).

    CAS  PubMed  Google Scholar 

  33. Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003). The authors define directional sensing as the ability of a cell to detect an asymmetric extracellular cue and generate an internal amplified response, whereas polarization is defined as the propensity of the cell to assume an asymmetric shape with a defined anterior and posterior. With these definitions many models for chemotaxis are evaluated.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, L. et al. Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol. Biol. Cell 14, 5028–5037 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Duijn, B. & Van Haastert, P. J. Independent control of locomotion and orientation during Dictyostelium discoideum chemotaxis. J. Cell Sci. 102, 763–768 (1992).

    CAS  PubMed  Google Scholar 

  36. Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  37. Klein, P. S. et al. A chemoattractant receptor controls development in Dictyostelium discoideum. Science 241, 1467–1472 (1988).

    CAS  PubMed  Google Scholar 

  38. Saxe, C. L. 3rd, Johnson, R., Devreotes, P. N. & Kimmel, A. R. Multiple genes for cell surface cAMP receptors in Dictyostelium discoideum. Dev. Genet. 12, 6–13 (1991).

    CAS  PubMed  Google Scholar 

  39. Youn, B. S., Mantel, C. & Broxmeyer, H. E. Chemokines, chemokine receptors and hematopoiesis. Immunol. Rev. 177, 150–174 (2000).

    CAS  PubMed  Google Scholar 

  40. Le, Y., Murphy, P. M. & Wang, J. M. Formyl-peptide receptors revisited. Trends Immunol. 23, 541–548 (2002).

    CAS  PubMed  Google Scholar 

  41. Maghazachi, A. A. G protein-coupled receptors in natural killer cells. J. Leukoc. Biol. 74, 16–24 (2003).

    CAS  PubMed  Google Scholar 

  42. Kim, J. Y., Borleis, J. A. & Devreotes, P. N. Switching of chemoattractant receptors programs development and morphogenesis in Dictyostelium: receptor subtypes activate common responses at different agonist concentrations. Dev. Biol. 197, 117–128 (1998).

    CAS  PubMed  Google Scholar 

  43. Dormann, D., Kim, J. Y., Devreotes, P. N. & Weijer, C. J. cAMP receptor affinity controls wave dynamics, geometry and morphogenesis in Dictyostelium. J. Cell Sci. 114, 2513–2523 (2001).

    CAS  PubMed  Google Scholar 

  44. Kim, J. Y. et al. Phosphorylation of chemoattractant receptors is not essential for chemotaxis or termination of G-protein-mediated responses. J. Biol. Chem. 272, 27313–27318 (1997).

    CAS  PubMed  Google Scholar 

  45. Richardson, R. M., Marjoram, R. J., Barak, L. S. & Snyderman, R. Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J. Immunol. 170, 2904–2911 (2003).

    CAS  PubMed  Google Scholar 

  46. Zhang, N., Long, Y. & Devreotes, P. N. Gγ in Dictyostelium: its role in localization of Gβγ to the membrane is required for chemotaxis in shallow gradients. Mol. Biol. Cell 12, 3204–3213 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Janetopoulos, C., Jin, T. & Devreotes, P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408–2411 (2001).

    CAS  PubMed  Google Scholar 

  48. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003). Expression of constitutively active and dominant-negative versions of various G proteins and GTPases in neutrophils indicate that chemoattractant-mediated signals segregate into two mutually exclusive pathways: G i –PtdIns(3,4,5)P 3 –Rac-dependent formation of F-actin at the front of cells and G 12/13 –RhoA-dependent formation of myosin-II filaments at the back.

    CAS  PubMed  Google Scholar 

  49. Araki, T. et al. Developmentally and spatially regulated activation of a Dictyostelium STAT protein by a serpentine receptor. Embo J. 17, 4018–4028 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Milne, J. L., Wu, L., Caterina, M. J. & Devreotes, P. N. Seven helix cAMP receptors stimulate Ca2+ entry in the absence of functional G proteins in Dictyostelium. J. Biol. Chem. 270, 5926–5931 (1995).

    CAS  PubMed  Google Scholar 

  51. Maeda, M. & Firtel, R. A. Activation of the mitogen-activated protein kinase ERK2 by the chemoattractant folic acid in Dictyostelium. J. Biol. Chem. 272, 23690–23695 (1997).

    CAS  PubMed  Google Scholar 

  52. Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. Embo J. 18, 2092–2105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, K., Takegawa, K., Emr, S. D. & Firtel, R. A. A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development. Mol. Cell. Biol. 15, 5645–5656 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    CAS  PubMed  Google Scholar 

  56. Huang, Y. E. et al. Receptor mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol. Biol. Cell 14, 1913–1922 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002). This paper and reference 60 characterize in detail the function and cellular localization of PI3K and Pten in D. discoideum cells. During chemotaxis PI3K is enriched at the leading edge and Pten accumulates at the posterior membrane of the cell.

    CAS  PubMed  Google Scholar 

  58. Kalesnikoff, J. et al. The role of SHIP in cytokine-induced signaling. Rev. Physiol. Biochem. Pharmacol. 149, 87–103 (2003).

    CAS  PubMed  Google Scholar 

  59. Loovers, H. et al. A diverse family of inositol 5-phosphatases playing a role in growth and development in Dictyostelium discoideum. J. Biol. Chem. 278, 5652–5658 (2002).

    PubMed  Google Scholar 

  60. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    CAS  PubMed  Google Scholar 

  61. Iijima, M., Huang, Y. E., Luo, H. R., Vazquez, F. & Devreotes, P. N. Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J. Biol. Chem. 279, 16606–16613 (2004).

    CAS  PubMed  Google Scholar 

  62. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol. 4, 513–518 (2002).

    CAS  PubMed  Google Scholar 

  63. Millard, T. H., Sharp, S. J. & Machesky, L. M. Signalling to actin assembly via the WASP (Wiskott–Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 380, 1–17 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    CAS  PubMed  Google Scholar 

  65. Blagg, S. L., Stewart, M., Sambles, C. & Insall, R. H. PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Curr. Biol. 13, 1480–1487 (2003).

    CAS  PubMed  Google Scholar 

  66. Bear, J. E., Rawls, J. F. & Saxe, C. L. 3rd. SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol. 142, 1325–1335 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    CAS  PubMed  Google Scholar 

  68. Gardiner, E. M. et al. Spatial and temporal analysis of Rac activation during live neutrophil chemotaxis. Curr. Biol. 12, 2029–2034 (2002).

    CAS  PubMed  Google Scholar 

  69. Itoh, R. E. et al. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell Biol. 22, 6582–6591 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235 (2003).

    CAS  PubMed  Google Scholar 

  71. Chubb, J. R. & Insall, R. H. Dictyostelium: an ideal organism for genetic dissection of Ras signalling networks. Biochim. Biophys. Acta 1525, 262–271 (2001).

    CAS  PubMed  Google Scholar 

  72. Lim, C. J., Spiegelman, G. B. & Weeks, G. Cytoskeletal regulation by Dictyostelium Ras subfamily proteins. J. Muscle Res. Cell Motil. 23, 729–736 (2002).

    CAS  PubMed  Google Scholar 

  73. Li, Z. et al. Directional sensing requires Gβγ-mediated PAK1 and PIXα-dependent activation of Cdc42. Cell 114, 215–227 (2003).

    CAS  PubMed  Google Scholar 

  74. Welch, H. C., Coadwell, W. J., Stephens, L. R. & Hawkins, P. T. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett. 546, 93–97 (2003).

    CAS  PubMed  Google Scholar 

  75. Welch, H. C. et al. P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell 108, 809–821 (2002).

    CAS  PubMed  Google Scholar 

  76. Park, H. S. et al. Sequential activation of phosphatidylinositol 3-kinase, βPix, Rac1, and Nox1 in growth factor-induced production of H2O2 . Mol. Cell Biol. 24, 4384–4394 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Levi, S., Polyakov, M. V. & Egelhoff, T. T. Myosin II dynamics in Dictyostelium: determinants for filament assembly and translocation to the cell cortex during chemoattractant responses. Cell Motil. Cytoskeleton 53, 177–188 (2002).

    CAS  PubMed  Google Scholar 

  79. Moores, S. L., Sabry, J. H. & Spudich, J. A. Myosin dynamics in live Dictyostelium cells. Proc. Natl Acad. Sci. USA 93, 443–446 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Eddy, R. J., Pierini, L. M., Matsumura, F. & Maxfield, F. R. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113, 1287–1298 (2000).

    CAS  PubMed  Google Scholar 

  81. Bosgraaf, L. et al. A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. Embo J. 21, 4560–4570 (2002). Using mutants with deletions of guanylyl cyclases, cGMP-phosphodiesterases or cGMP-binding targets, the authors characterize the function of cGMP in D. discoideum as an inducer of myosin-II filaments in the cortex at the back of the cell, leading to suppression of lateral pseudopodia.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, G. & Newell, P. C. Role of cyclic GMP in signal transduction to cytoskeletal myosin. Symp. Soc. Exp. Biol. 47, 283–295 (1993).

    CAS  PubMed  Google Scholar 

  83. Goldberg, J. M., Bosgraaf, L., Van Haastert, P. J. M. & Smith, L. Identification of four candidate cGMP targets in Dictyostelium. Proc. Natl Acad. Sci. USA 99, 6749–6754 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Roelofs, J., Smith, J. L. & Van Haastert, P. J. M. cGMP signalling: different ways to create a pathway. Trends Genet. 19, 132–134 (2002).

    Google Scholar 

  85. Chung, C. Y., Potikyan, G. & Firtel, R. A. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol. Cell 7, 937–947 (2001).

    CAS  PubMed  Google Scholar 

  86. De La Roche, M. A., Smith, J. L., Betapudi, V., Egelhoff, T. T. & Cote, G. P. Signaling pathways regulating Dictyostelium myosin II. J. Muscle Res. Cell Motil. 23, 703–718 (2002).

    CAS  PubMed  Google Scholar 

  87. Steimle, P. A. et al. Recruitment of a myosin heavy chain kinase to actin-rich protrusions in Dictyostelium. Curr. Biol. 11, 708–713 (2001).

    CAS  PubMed  Google Scholar 

  88. Riento, K. & Ridley, A. J. ROCKs: multifunctional kinases in cell behaviour. Nature Rev. Mol. Cell Biol. 4, 446–456 (2003).

    CAS  Google Scholar 

  89. Van Haastert, P. J. M. & Van der Heijden, P. R. Excitation, adaptation, and deadaptation of the cAMP-mediated cGMP response in Dictyostelium discoideum. J. Cell Biol. 96, 347–353 (1983).

    CAS  PubMed  Google Scholar 

  90. Berlot, C. H., Spudich, J. A. & Devreotes, P. N. Chemoattractant-elicited increases in myosin phosphorylation in Dictyostelium. Cell 43, 307–314 (1985).

    CAS  PubMed  Google Scholar 

  91. Zhang, H. et al. Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity during Dictyostelium chemotaxis. J. Cell Sci. 115, 1733–1747 (2002).

    CAS  PubMed  Google Scholar 

  92. Stock, A. M. & Mowbray, S. L. Bacterial chemotaxis: a field in motion. Curr. Opin. Struct. Biol. 5, 744–751 (1995).

    CAS  PubMed  Google Scholar 

  93. Caterina, M. J., Devreotes, P. N., Borleis, J. & Hereld, D. Agonist-induced loss of ligand binding is correlated with phosphorylation of cAR1, a G protein-coupled chemoattractant receptor from Dictyostelium. J. Biol. Chem. 270, 8667–8672 (1995).

    CAS  PubMed  Google Scholar 

  94. Valkema, R. & Van Haastert, P. J. Inhibition of receptor-stimulated guanylyl cyclase by intracellular calcium ions in Dictyostelium cells. Biochem. Biophys. Res. Commun. 186, 263–268 (1992).

    CAS  PubMed  Google Scholar 

  95. Kuwayama, H. & Van Haastert, P. J. Regulation of guanylyl cyclase by a cGMP-binding protein during chemotaxis in Dictyostelium discoideum. J. Biol. Chem. 271, 23718–23724 (1996).

    CAS  PubMed  Google Scholar 

  96. Bosgraaf, L. et al. Identification and characterization of two unusual cGMP-stimulated phoshodiesterases in Dictyostelium. Mol. Biol. Cell 13, 3878–3889 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Valkema, R. & Van Haastert, P. J. M. A model for cAMP-mediated cGMP response in Dictyostelium discoideum. Mol. Biol. Cell 5, 575–585 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin, T., Zhang, N., Long, Y., Parent, C. A. & Devreotes, P. N. Localization of the G protein βγ complex in living cells during chemotaxis. Science 287, 1034–1036 (2000).

    CAS  PubMed  Google Scholar 

  99. Sadhu, C., Masinovsky, B., Dick, K., Sowell, C. G. & Staunton, D. E. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol. 170, 2647–2654 (2003).

    CAS  PubMed  Google Scholar 

  100. Sulis, M. L. & Parsons, R. PTEN: from pathology to biology. Trends Cell Biol. 13, 478–483 (2003).

    CAS  PubMed  Google Scholar 

  101. Traynor-Kaplan, A. E. et al. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J. Biol. Chem. 264, 15668–15673 (1989).

    CAS  PubMed  Google Scholar 

  102. Roos, W., Scheidegger, C. & Gerish, G. Adenylate cyclase activity oscillations as signals for cell aggregation in Dictyostelium discoideum. Nature 266, 259–261 (1977).

    CAS  PubMed  Google Scholar 

  103. Jackowski, S. & Sha'afi, R. I. Response of adenosine cyclic 3′,5′-monophosphate level in rabbit neutrophils to the chemotactic peptide formyl-methionyl-leucyl-phenylalanine. Mol. Pharmacol. 16, 473–481 (1979).

    CAS  PubMed  Google Scholar 

  104. van Haastert, P. J. & van Dijken, P. Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium. FEBS Lett. 410, 39–43 (1997).

    CAS  PubMed  Google Scholar 

  105. Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321 (1984).

    CAS  PubMed  Google Scholar 

  106. Bumann, J., Wurster, B. & Malchow, D. Attractant-induced changes and oscillations of the extracellular Ca++ concentration in suspensions of differentiating Dictyostelium cells. J. Cell Biol. 98, 173–178 (1984).

    CAS  PubMed  Google Scholar 

  107. Klein, P., Vaughan, R., Borleis, J. & Devreotes, P. The surface cyclic AMP receptor in Dictyostelium Levels of ligand-induced phosphorylation, solubilization, identification of primary transcript, and developmental regulation of expression. J. Biol. Chem. 262, 358–364 (1987).

    CAS  PubMed  Google Scholar 

  108. Xiao, Z., Zhang, N., Murphy, D. B. & Devreotes, P. N. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J. Cell Biol. 139, 365–374 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Servant, G., Weiner, O. D., Neptune, E. R., Sedat, J. W. & Bourne, H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell 10, 1163–1178 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, L. et al. Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol. Biol. Cell. 14, 5028–5037 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the members of their laboratories who have contributed much of the work discussed in this review. P.N.D. is supported by grants from the National Institutes of Health. P.V.H. is supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

Cdc42

i

2

12

13

PAK1

PI3Kγ

PKB

PREX1

PTEN

ROCK

WASP

Glossary

NEUTROPHIL

A phagocytic cell of the myeloid lineage that has an important role in the inflammatory response. It undergoes chemotaxis towards sites of infection or wounding.

FLAGELLUM

The cell-motility apparatus in swimming bacteria.

LEADING EDGE

The thin margin of a lamellipodium that spans the area of the cell from the plasma membrane to about 1 μm back into the lamellipodium.

UROPOD

A slender appendage that is formed at the trailing, rear edge of fast-migrating cells such as amoebae, neutrophils or lymphocytes.

SEVEN-TRANSMEMBRANE-SPANNING RECEPTOR

A receptor that contains seven membrane-spanning helices and usually transmits signals to the inside of a cell by activating heterotrimeric G proteins.

HETEROTRIMERIC G PROTEIN

A protein complex of three proteins (Gα, Gβ, and Gγ). Whereas Gβ and Gγ form a tight complex, Gα is part of the complex in its inactive, GDP-bound, form but dissociates in its active, GTP-bound, form. Both Gα and Gβγ can transmit downstream signals after activation.

FRET

(fluorescence resonance energy transfer). A method to identify the proximity of two proteins, each of which is labelled with a different fluorescent group.

PLECKSTRIN-HOMOLOGY (PH) DOMAIN

A sequence of 100 amino acids that is present in many signalling molecules and binds to lipid products of phosphatidylinositol 3-kinase. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.

Arp2/3 COMPLEX

A complex that consists of two actin-related proteins, Arp2 and Arp3, along with five smaller proteins. When activated, the Arp2/3 complex binds to the side of an existing actin filament and nucleates the assembly of a new actin filament. The resulting branch structure is Y-shaped.

RHO-FAMILY GTPases

Ras-related small GTPases that are involved in controlling the polymerization of actin.

GUANINE NUCLEOTIDE-EXCHANGE FACTOR (GEF)

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

DOMINANT-NEGATIVE

A defective protein that retains interaction capabilities and so distorts or competes with normal proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Haastert, P., Devreotes, P. Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5, 626–634 (2004). https://doi.org/10.1038/nrm1435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing