Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Oligosaccharide microarrays to decipher the glyco code

Abstract

The oligosaccharide moieties of glycoproteins, glycolipids, proteoglycans and polysaccharides are highly diverse, the reason for this diversity is not yet understood. Neoglycolipid technology allows the generation of oligosaccharide probes with lipid tags from desired sources and is showing promise as a basis for oligosaccharide microarrays. Such microarrays would allow surveys of glycomes and proteomes to be carried out, which would enable the molecular definition of carbohydrate-recognition systems in whole organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of NGL technology.
Figure 2: NGL-based oligosaccharide microarrays.
Figure 3: Probing glycomes and proteomes for carbohydrate-recognition systems.

Similar content being viewed by others

References

  1. Carbohydrates and Glycobiology. Science 291, 2337–2378 (2001).

  2. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  3. Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Rev. Mol. Cell Biol. 4, 202–212 (2003).

    Article  CAS  Google Scholar 

  4. Crocker, P. R. Mammalian Carbohydrate Recognition Systems (Springer–Verlag, Berlin, 2001).

    Book  Google Scholar 

  5. Karlsson, K. -A. Bacterium–host protein–carbohydrate interactions and pathogenicity. Biochem. Soc. Trans. 27, 471–474 (1999).

    Article  CAS  Google Scholar 

  6. Watkins, W. M. Biochemistry and genetics of the ABO, Lewis and P blood group systems. Adv. Hum. Genet. 10, 1–136, 379–385 (1980).

    CAS  PubMed  Google Scholar 

  7. Kabat, E. A. Philip Levine Award Lecture. Contributions of quantitative immunochemistry to knowledge of blood group A, B, H, Le, I and i antigens. Am. J. Clin. Pathol. 78, 281–292 (1982).

    Article  CAS  Google Scholar 

  8. Esko, J. D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest 108, 169–173 (2001).

    Article  CAS  Google Scholar 

  9. Sugahara, K. et al. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–620 (2003).

    Article  CAS  Google Scholar 

  10. Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl Acad. Sci. USA 99, 10231–10233 (2002).

    Article  CAS  Google Scholar 

  11. Feizi, T. Progress in deciphering the information content of the 'glycome'—a crescendo in the closing years of the millennium. Glycoconj. J. 17, 553–565 (2000).

    Article  CAS  Google Scholar 

  12. Feizi, T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314, 53–57 (1985).

    Article  CAS  Google Scholar 

  13. Drickamer, K. & Taylor, M. E. Identification of lectins from genomic sequence data. Methods Enzymol. 362, 560–567 (2003).

    Article  CAS  Google Scholar 

  14. Feizi, T. Carbohydrate differentiation antigens: probable ligands for cell adhesion molecules. Trends Biochem. Sci. 16, 84–86 (1991).

    Article  CAS  Google Scholar 

  15. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M. & Chai, W. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate–protein interactions. Nature Biotechnol. 20, 1011–1017 (2002).

    Article  CAS  Google Scholar 

  16. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B. & Marsh, W. L. Immunochemical studies on blood groups XLIX. The I antigen complex: specificity differences among anti-I sera revealed by quantitative precipitin studies; partial structure of the I determinant specific for one anti-I serum. J. Immunol. 106, 1578–1592 (1971).

    CAS  PubMed  Google Scholar 

  17. Gooi, H. C. et al. Stage specific embryonic antigen SSEA-1 involves α1–3 fucosylated type 2 blood group chains. Nature 292, 156–158 (1981).

    Article  CAS  Google Scholar 

  18. Tang, P. W., Gooi, H. C., Hardy, M., Lee, Y. C. & Feizi, T. Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins. Biochem. Biophys. Res. Commun. 132, 474–480 (1985).

    Article  CAS  Google Scholar 

  19. Feizi, T., Stoll, M. S., Yuen, C. -T., Chai, W. & Lawson, A. M. Neoglycolipids: probes of oligosaccharide structure, antigenicity and function. Methods Enzymol. 230, 484–519 (1994).

    Article  CAS  Google Scholar 

  20. Stoll, M. S., Hounsell, E. F., Lawson, A. M., Chai, W. & Feizi, T. Microscale sequencing of O-linked oligosaccharides using mild periodate oxidation of alditols, coupling to phospholipid and TLC-MS analysis of the resulting neoglycolipids. Eur. J. Biochem. 189, 499–507 (1990).

    Article  CAS  Google Scholar 

  21. Chai, W., Stoll, M. S., Cashmore, G. C. & Lawson, A. M. Specificity of mild periodate oxidation of oligosaccharide-alditols: relevance to the analysis of the core-branching pattern of O-linked glycoprotein oligosaccharides. Carbohydr. Res. 239, 107–115 (1993).

    Article  CAS  Google Scholar 

  22. Chai, W. et al. High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur. J. Biochem. 263, 879–888 (1999).

    Article  CAS  Google Scholar 

  23. Srinivas, O., Mitra, N., Surolia, A. & Jayaraman, N. Photoswitchable multivalent sugar ligands: synthesis, isomerization, and lectin binding studies of azobenzene–glycopyranoside derivatives. J. Am. Chem. Soc. 124, 2124–2125 (2002).

    Article  CAS  Google Scholar 

  24. Galustian, C. et al. Synergistic interactions of the two classes of ligand, sialyl-Lewisa/x fuco-oligosaccharides and short sulpho-motifs, with the P- and L- selectins: implications for therapeutic inhibitor designs. Immunology 105, 350–359 (2002).

    Article  CAS  Google Scholar 

  25. Childs, R. A. et al. Neoglycolipids as probes of oligosaccharide recognition by recombinant and natural mannose-binding proteins of the rat and man. Biochem. J. 262, 131–138 (1989).

    Article  CAS  Google Scholar 

  26. Mizuochi, T. et al. A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex type as well as high-mannose type oligosaccharide chains. J. Biol. Chem. 264, 13834–13839 (1989).

    CAS  PubMed  Google Scholar 

  27. Lawson, A. M. et al. High-sensitivity structural analyses of oligosaccharide probes (neoglycolipids) by liquid-secondary-ion mass spectrometry. Carbohydr. Res. 200, 47–57 (1990).

    Article  CAS  Google Scholar 

  28. Chai, W., Stoll, M. S., Galustian, C., Lawson, A. M. & Feizi, T. Neoglycolipid technology: deciphering information content of glycome. Methods Enzymol. 362, 160–195 (2003).

    Article  CAS  Google Scholar 

  29. Stoll, M. S., Mizuochi, T., Childs, R. A. & Feizi, T. Improved procedure for the construction of neoglycolipids having antigenic and lectin-binding activities from reducing oligosaccharides. Biochem. J. 256, 661–664 (1988).

    Article  CAS  Google Scholar 

  30. Tang, P. W. & Feizi, T. Neoglycolipid micro-immunoassays applied to the oligosaccharides of human milk galactosyltransferase detect blood group related antigens on both O- and N-linked chains. Carbohydr. Res. 16, 133–143 (1987).

    Article  Google Scholar 

  31. Tang, P. W., Scudder, P., Mehmet, H., Hounsell, E. F. & Feizi, T. Sulphate groups are involved in the antigenicity of keratan sulphate and mask i antigen expression on their poly-N-acetyllactosamine backbones. Eur. J. Biochem. 160, 537–545 (1986).

    Article  CAS  Google Scholar 

  32. Solis, D. et al. Differential recognition by conglutinin and mannan-binding protein of N-glycans presented on neoglycolipids and glycoproteins with special reference to complement glycoprotein C3 and ribonuclease B. J. Biol. Chem. 269, 11555–11562 (1994).

    CAS  PubMed  Google Scholar 

  33. Feizi, T. & Childs, R. A. Neoglycolipids: probes in structure/function assignments to oligosaccharides. Methods Enzymol. 242, 205–217 (1994).

    Article  CAS  Google Scholar 

  34. Feizi, T., Lawson, A. M. & Chai, W. in Carbohydrate-based Drug Discovery: from the Laboratory to the Clinic. (Wong, C.-H. ed.) 747–760 (Wiley–VCH, Weinheim, 2003).

    Google Scholar 

  35. Osanai, T. et al. Two families of murine carbohydrate ligands for E-selectin. Biochem. Biophys. Res. Commun. 218, 610–615 (1996).

    Article  CAS  Google Scholar 

  36. Galustian, G. et al. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and bell binding approaches, and differing specificities revealed for SIGN-R3 and langerin. Int. Immunol. 13, 853–866 (2004).

    Article  Google Scholar 

  37. Feizi, T., Fazio, F., Chai, W. & Wong, C. H. Carbohydrate microarrays — a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645 (2003).

    Article  CAS  Google Scholar 

  38. Wang, D., Liu, S., Trummer, B. J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol. 20, 275–281 (2002).

    Article  CAS  Google Scholar 

  39. Willats, W. G., Rasmussen, S. E., Kristensen, T., Mikkelsen, J. D. & Knox, J. P. Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2, 1666–1671 (2002).

    Article  CAS  Google Scholar 

  40. Houseman, B. T. & Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454 (2002).

    Article  CAS  Google Scholar 

  41. Park, S. & Shin, I. Fabrication of carbohydrate chips for studying protein–carbohydrate interactions. Angew. Chem. Int. Ed Engl. 41, 3180–3182 (2002).

    Article  CAS  Google Scholar 

  42. Schwarz, M. et al. A new kind of carbohydrate array, its use for profiling anti-glycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 13, 749–754 (2003).

    Article  CAS  Google Scholar 

  43. Fazio, F., Bryan, M. C., Blixt, O., Paulson, J. C. & Wong, C. H. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 124, 14397–14402 (2002).

    Article  CAS  Google Scholar 

  44. Horan, N., Yan, L., Isobe, H., Whitesides, G. M. & Kahne, D. Nonstatistical binding of a protein to clustered carbohydrates. Proc. Natl Acad. Sci. USA 96, 11782–11786 (1999).

    Article  CAS  Google Scholar 

  45. Leteux, C. et al. Influence of oligosaccharide presentation on the interactions of carbohydrate sequence-specific antibodies and the selectins. Observations with biotinylated oligosaccharides. J. Immunol. Methods 227, 109–119 (1999).

    Article  CAS  Google Scholar 

  46. Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003).

    Article  CAS  Google Scholar 

  47. Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    Article  CAS  Google Scholar 

  48. Su, J. & Mrksich, M. Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. Angew. Chem. Int. Ed. Engl. 41, 4715–4718 (2002).

    Article  CAS  Google Scholar 

  49. Groves, J. T., Wulfing, C. & Boxer, S. G. Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers. Biophys. J. 71, 2716–2723 (1996).

    Article  CAS  Google Scholar 

  50. Stoll, M. S. et al. Fluorescent neoglycolipids: improved probes for oligosaccharide ligand discovery. Eur. J. Biochem. 267, 1795–1804 (2000).

    Article  CAS  Google Scholar 

  51. Chou, D. K. H. et al. Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J. Biol. Chem. 261, 11717–11725 (1986).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Medical Research Council. A. M. Lawson, R. A. Childs, M. S. Stoll and C. Galustian are acknowledged for critically reading this manuscript and we would also like to thank P. Crocker for stimulating discussions. This article is dedicated to the late Elvin A Kabat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ten Feizi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

E-selectin

Interferon-γ

L-selectin

P-selectin

RANTES

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feizi, T., Chai, W. Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol 5, 582–588 (2004). https://doi.org/10.1038/nrm1428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing