Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Nuclear stress bodies: a heterochromatin affair?

Abstract

It is still largely unknown how the various nuclear subcompartments are formed, why they form in particular locations and how they are linked to nuclear function. Nuclear stress bodies provide a new opportunity to address these questions and to test models of self-organization of nuclear structures. The assembly of these bodies requires the synthesis of non-coding RNAs with a probable role in the post-transcriptional regulation of gene expression and in higher-order chromatin organization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of nuclear stress bodies.
Figure 2: Formation of nuclear stress bodies can affect the alternative splicing pattern of selected genes.
Figure 3: A model for the formation and disassembly of nuclear stress bodies.
Figure 4: Heterochromatin assembly of tandem repeats.

Similar content being viewed by others

References

  1. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    Article  CAS  Google Scholar 

  2. Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nature Rev. Mol. Cell Biol. 4, 605–612 (2003).

    Article  CAS  Google Scholar 

  3. Spector, D. L. Nuclear domains. J. Cell Sci. 114, 2891–2893 (2001).

    CAS  Google Scholar 

  4. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).

    Article  CAS  Google Scholar 

  5. Sarge, K. D., Murphy, S. P. & Morimoto, R. I. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13, 1392–1407 (1993).

    Article  CAS  Google Scholar 

  6. Jolly, C., Usson, Y. & Morimoto, R. I. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl Acad. Sci. USA 96, 6769–6774 (1999).

    Article  CAS  Google Scholar 

  7. Cotto, J., Fox, S. & Morimoto, R. HSF1 granules: a novel stress-induced nuclear compartment of human cells. J. Cell Sci. 110, 2925–2934 (1997).

    CAS  Google Scholar 

  8. Weighardt, F. et al. A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. J. Cell Sci. 112, 1465–1476 (1999).

    CAS  Google Scholar 

  9. Denegri, M. et al. Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol. Biol. Cell 12, 3502–3514 (2001).

    Article  CAS  Google Scholar 

  10. Tourriere, H. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell. Biol. 160, 823–831 (2003).

    Article  CAS  Google Scholar 

  11. Chiodi, I. et al. Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. J. Cell Sci. 113, 4043–4053 (2000).

    CAS  Google Scholar 

  12. Jolly, C., Morimoto, R., Robert-Nicoud, M. & Vourc'h, C. HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J. Cell Sci. 110, 2935–2941 (1997).

    CAS  Google Scholar 

  13. Denegri, M. et al. Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol. Biol. Cell 13, 2069–2079 (2002).

    Article  CAS  Google Scholar 

  14. Misteli, T. Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–847 (2001).

    Article  CAS  Google Scholar 

  15. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796 (1998).

    Article  CAS  Google Scholar 

  16. Holmberg, C. I., Tran, S. E., Eriksson, J. E. & Sistonen, L. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem. Sci. 27, 619–627 (2002).

    Article  CAS  Google Scholar 

  17. Jolly, C. et al. In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J. Cell Biol. 156, 775–781 (2002).

    Article  CAS  Google Scholar 

  18. Mahl, P., Lutz, Y., Puvion, E. & Fuchs, J. P. Rapid effect of heat shock on two heterogeneous nuclear ribonucleoprotein-associated antigens in HeLa cells. J. Cell Biol. 109, 1921–1935 (1989).

    Article  CAS  Google Scholar 

  19. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  Google Scholar 

  20. Smith, C. W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  Google Scholar 

  21. Caceres, J. F. & Kornblihtt, A. R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  Google Scholar 

  22. Mayeda, A. & Krainer, A. R. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68, 365–375 (1992).

    Article  CAS  Google Scholar 

  23. Miller, O. J., Schnedl, W., Allen, J. & Erlanger, B. F. 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251, 636–637 (1974).

    Article  CAS  Google Scholar 

  24. Alastalo, T. P. et al. Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J. Cell Sci. 116, 3557–3570 (2003).

    Article  CAS  Google Scholar 

  25. Turner, B. M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  Google Scholar 

  26. Jolly, C. et al. Stress-induced transcription of satellite III repeats. J. Cell Biol. 164, 25–33 (2004).

    Article  CAS  Google Scholar 

  27. Rizzi, N. et al. Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol. Biol. Cell 15, 543–551 (2004).

    Article  CAS  Google Scholar 

  28. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  29. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  30. He, B., Meng, Y. H. & Mivechi, N. F. Glycogen synthase kinase 3β and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol. Cell. Biol. 18, 6624–6633 (1998).

    Article  CAS  Google Scholar 

  31. Lis, J. T., Prestidge, L. & Hogness, D. S. A novel arrangement of tandemly repeated genes at a major heat shock site in D. melanogaster. Cell 14, 901–919 (1978).

    Article  CAS  Google Scholar 

  32. Fornace, A. J. Jr & Mitchell, J. B. Induction of B2 RNA polymerase III transcription by heat shock: enrichment for heat shock induced sequences in rodent cells by hybridization subtraction. Nucl. Acids Res. 14, 5793–5811 (1986).

    Article  CAS  Google Scholar 

  33. Ranum, L. P. & Day, J. W. Dominantly inherited, non-coding microsatellite expansion disorders. Curr. Opin. Genet. Dev. 12, 266–271 (2002).

    Article  CAS  Google Scholar 

  34. Taneja, K. L., McCurrach, M., Schalling, M., Housman, D. & Singer, R. H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 128, 995–1002 (1995).

    Article  CAS  Google Scholar 

  35. Mankodi, A. et al. Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann. Neurol. 54, 760–768 (2003).

    Article  CAS  Google Scholar 

  36. Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  Google Scholar 

  37. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  Google Scholar 

  38. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  Google Scholar 

  39. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  Google Scholar 

  40. Martienssen, R. A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet. 35, 213–214 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I want to thank S. Riva and R. Valgardsdottir for their valuable comments on this manuscript. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro, from the programme Ministero dell'Istruzione Universita' e Ricerca (MIUR)/Fondo per gli Investimenti della Ricerca di Base 'Post-genoma' and from Progetto Consiglio Nazionale delle Ricerche–MIUR 'Genomica Funzionale'.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CBP

DM1

DM2

DMPK

hnRNP A1

hnRNP M

HSF1

HSF2

MBNL

SAFB

SAM68

SC35

SF2

SRp30c

FURTHER INFORMATION

Nuclear Protein Database (NPD)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biamonti, G. Nuclear stress bodies: a heterochromatin affair?. Nat Rev Mol Cell Biol 5, 493–498 (2004). https://doi.org/10.1038/nrm1405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing