Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DEAD-box proteins: the driving forces behind RNA metabolism

Key Points

  • RNA helicases of the DEAD-box protein family all have nine characteristic motifs. These motifs clearly distinguish this family from other, highly related, RNA helicase families such as the DEAH-box or the Ski2 families.

  • The motifs are contained within a core domain that is flanked by less-conserved regions, which are likely to represent specificity elements for substrate targeting, interaction with other proteins or cellular localization.

  • RNA helicases of the DEAD-box family are required for different cellular processes such as transcription, pre-mRNA processing, ribosome biogenesis, nuclear mRNA export, translation initiation, RNA turnover and organelle function.

  • The structure of the core element, which contains all the conserved motifs that are required for helicase activity, is very similar to viral RNA helicases and to DNA helicases, which indicates that the fundamental activities of these enzymes are similar.

  • ATP-binding and hydrolysis by the core element induce conformational changes that are responsible for the enzymatic activity of these proteins; that is, unwinding of duplex RNA or disrupting RNA–protein complexes.

  • The enzymatic activity varies among different proteins and can be more or less processive, parameters that are probably influenced by interacting partners and the substrate.

Abstract

RNA helicases from the DEAD-box family are found in almost all organisms and have important roles in RNA metabolism. They are associated with many processes ranging from RNA synthesis to RNA degradation. DEAD-box proteins use the energy from ATP hydrolysis to rearrange inter- or intra-molecular RNA structures or dissociate RNA–protein complexes. Such dynamic rearrangements are fundamental for many, if not all, steps in the life of an RNA molecule. Recent biochemical, genetic and structural data shed light on how these proteins power the metabolism of RNA within a cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Methanococcus jannaschii DEAD-box protein.
Figure 2: Cellular processes that require DEAD-box RNA helicases.
Figure 3: Possible modes of unwinding by DEAD-box RNA helicases.
Figure 4: Phylogram of DEAD-box proteins from the three kingdoms of life.

Similar content being viewed by others

References

  1. Gorbalenya, A. E. & Koonin, E. V. Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    Article  CAS  Google Scholar 

  2. Linder, P. et al. Birth of the D-E-A-D box. Nature 337, 121–122 (1989). This scientific correspondence highlighted the relationship among different proteins that are involved in RNA metabolism.

    Article  CAS  PubMed  Google Scholar 

  3. Tanner, N. K., Cordin, O., Banroques, J., Doère, M. & Linder, P. The Q Motif. A newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11, 127–138 (2003). The discovery of the Q-motif highlights the differences between RNA helicase families and the possibility that these proteins might be regulated differently.

    Article  CAS  PubMed  Google Scholar 

  4. Tanner, N. K. The newly identified Q motif of DEAD box helicases is involved in adenine recognition. Cell Cycle 2, 18–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de la Cruz, J., Kressler, D. & Linder, P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24, 192–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, S. -H., Smith, J., Claude, A. & Lin, R. -J. The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase. EMBO J. 11, 2319–2326 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, C. -G. & Hurwitz, J. A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3′ to 5′ direction. J. Biol. Chem. 267, 4398–4407 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a DExx box DNA helicase. Nature 384, 379–383 (1996). First report on the 3D structure of a DNA helicase, which later turned out to be similar to the structure of RNA helicases.

    Article  CAS  PubMed  Google Scholar 

  10. Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol. 4, 463–467 (1997). First report on the 3D structure of a RNA helicase — in this case from the DExH family.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, J. L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Cho, H. -S. et al. Crystal structure of RNA helicase from genotype 1b hepatitis C virus: a feasible mechanism of unwinding duplex RNA. J. Biol. Chem. 273, 15045–15052 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Benz, J., Trachsel, H. & Baumann, U. Crystal structure of ATPase domain of translation initiation factor eIF4A from Saccharomyces cerevisiae the prototype of the DEAD box protein family. Structure Fold Des. 7, 671–679 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Caruthers, J. M., Johnson, E. R. & McKay, D. B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl Acad. Sci. USA 97, 3080–3085 (2000).

    Article  Google Scholar 

  16. Story, R. M., Li, H. & Abelson, J. N. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl Acad. Sci. USA 98, 1465–1470 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carmel, A. B. & Matthews, B. W. Crystal structure of the BstDEAD N-terminal domain: a novel DEAD protein from Bacillus stearothermophilus. RNA 10, 66–74 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caruthers, J. M. & McKay, D. B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Singleton, M. R. & Wigley, D. B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanner, N. K. & Linder, P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8, 251–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yan, X., Mouillet, J. F., Ou, Q. & Sadovsky, Y. A novel domain within the DEAD-box protein DP103 is essential for transcriptional repression and helicase activity. Mol. Cell. Biol. 23, 414–423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rajendran, R. R. et al. Regulation of nuclear receptor transcriptional activity by a novel DEAD box RNA helicase (DP97). J. Biol. Chem. 278, 4628–4638 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Rossow, K. L. & Janknecht, R. Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22, 151–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kistler, A. L. & Guthrie, C. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for Sub2, an essential spliceosomal ATPase. Genes Dev. 15, 42–49 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, J. Y. -F. et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell 7, 227–232 (2001). This paper, together with reference 24, reported for the first time genetic evidence for an RNPase activity of DEAD-box proteins.

    Article  CAS  PubMed  Google Scholar 

  26. Jankowsky, E., Gross, C. H., Shumann, S. & Pyle, A. M. Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001). This publication reported for the first time biochemical evidence for an RNPase activity of a DExH-box protein.

    Article  CAS  PubMed  Google Scholar 

  27. Lafontaine, D. L. J. & Tollervey, D. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23, 383–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Charollais, J., Pflieger, D., Vinh, J., Dreyfus, M. & Iost, I. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 48, 1253–1265 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Tseng, S. S. -I. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell. 14, 1664–1676 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rogers, G. W., Jr., Komar, A. A. & Merrick, W. C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Svitkin, Y. V., Ovchinnikov, L. P., Dreyfuss, G. & Sonenberg, N. General RNA binding proteins render translation cap dependent. EMBO J. 15, 7147–7155 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de la Cruz, J., Iost, I., Kressler, D. & Linder, P. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 5201–5206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chuang, R. -Y., Weaver, P. L., Liu, Z. & Chang, T. -H. Requirement of the DEAD-box protein Ded1p for messenger RNA translation. Science 275, 1468–1471 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Noueiry, A. O., Chen, J. & Ahlquist, P. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc. Natl Acad. Sci. USA 97, 12985–12990 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grallert, B. et al. A fission yeast general translation factor reveals links between protein synthesis and cell cycle controls. J. Cell Science 113, 1447–1458 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Svitkin, Y. V. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Markussen, F. H., Michon, A. M., Breitwieser, W. & Ephrussi, A. Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121, 3723–3732 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Liang, L., Diehl-Jones, W. & Lasko, P. Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120, 1201–1211 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Séraphin, B., Simon, M., Boulet, A. & Faye, G. Mitochondrial splicing requires a protein from a novel helicase family. Nature 337, 84–87 (1989).

    Article  PubMed  Google Scholar 

  45. Schmidt, U., Lehmann, K. & Stahl, U. A novel mitochondrial DEAD box protein (Mrh4) required for maintenance of mtDNA in Saccharomyces cerevisiae. FEM Yeast Res. 2, 267–276 (2002).

    CAS  Google Scholar 

  46. Mohr, S., Stryker, J. M. & Lambowitz, A. M. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109, 769–779 (2002). CYT-19 functions as an ATP-dependent RNA chaperone to destabilize non-native RNA structures that constitute kinetic traps in the CYT-18-assisted RNA-folding pathway and thereby promotes group I intron splicing in vivo and in vitro.

    Article  CAS  PubMed  Google Scholar 

  47. Valgardsdottir, R., Brede, G., Eide, L. G., Frengen, E. & Prydz, H. Cloning and characterization of MDDX28, a putative dead-box helicase with mitochondrial and nuclear localization. J. Biol. Chem. 276, 32056–32063 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Missel, A., Souza, A. E., Nörskau, G. & Göhringer, H. U. Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol. Cell. Biol. 17, 4895–4903 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Py, B., Higgins, C. F., Krisch, H. M. & Carpousis, A. J. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381, 169–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Coburn, G. A., Miao, X., Briant, D. J. & Mackie, G. A. Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3′ exonuclease and a DEAD-box RNA helicase. Genes Dev. 13, 2594–2603 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson, J. S. J. & Parker, R. P. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de la Cruz, J., Kressler, D., Tollervey, D. & Linder, P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA i Saccharomyces cerevisiae. EMBO J. 17, 1128–1140 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coller, J. M., Tucker, M., Sheth, U., Valencia-Sanchez, M. A. & Parker, R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717–1727 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ladomery, M., Wade, E. & Sommerville, J. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucl. Acids Res. 25, 965–973 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smillie, D. A. & Sommerville, J. RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles. J. Cell Sci. 115, 395–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Minshall, N., Thom, G. & Standart, N. A conserved role of a DEAD box helicase in mRNA masking. RNA 7, 1728–1742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Akao, Y. et al. The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res. 55, 3444–3449 (1995).

    CAS  PubMed  Google Scholar 

  58. Tseng-Rogenski, S. S. et al. Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucl. Acids Res. 31, 4995–5002 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Luo, M. -J. et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644–647 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Jensen, T. H., Boulay, J., Rosbash, M. & Libri, D. The DECD-box putative ATPase Sub2p is an early mRNA export factor. Curr. Biol. 11, 1711–1715 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Strässer, K. & Hurt, E. The splicing factor Sub2p interacts directly with the transport factor Yra1p and is required for nuclear mRNA export. Nature 413, 648–652 (2001).

    Article  PubMed  Google Scholar 

  63. Charroux, B. et al. Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147, 1181–1194 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kressler, D., de la Cruz, J., Rojo, M. & Linder, P. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 7283–7294 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Linder, P., Gasteiger, E. & Bairoch, A. A comprehensive web resource on RNA helicases from the baker's yeast Saccharomyces cerevisiae. Yeast 16, 507–509 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Iost, I., Dreyfus, M. & Linder, P. Ded1p, a DEAD-box protein required for translation initation in Saccharomyces cerevisiae, is an RNA helicase. J. Biol. Chem. 274, 17677–17683 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Hirling, H., Scheffner, M., Restle, T. & Stahl, H. RNA helicase activity associated with the human p68 protein. Nature 339, 562–564 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Yu, E. & Owttrim, G. W. Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase. Nucl. Acids Res. 28, 3926–3934 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicol, S. M. & Fuller-Pace, F. V. The 'DEAD box' protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc. Natl Acad. Sci. USA 92, 11681–11685 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsu, C. A., Kossen, K. & Uhlenbeck, O. C. The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. RNA 7, 702–709 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kossen, K., Karginov, F. V. & Uhlenbeck, O. C. The carboxy-terminal domain of the DExDH protein YxiN is sufficient to confer specificity for 23S rRNA. J. Mol. Biol. 324, 625–636 (2002). Shows that the transfer of a carboxy-terminal flanking sequences from a substrate-specific RNA helicase to a nonspecific RNA helicase allows transfer of specificity.

    Article  CAS  PubMed  Google Scholar 

  72. O'Day, C. -L., Dalbadie-McFarland, G. & Abelson, J. The Saccharomyces cerevisiae Prp5 protein has RNA-dependent ATPase activity with specificity for U2 small nuclear RNA. J. Biol. Chem. 271, 33261–33267 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Silverman, E., Edwalds-Gilbert, G. & Lin, R. J. DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312, 1–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Ray, B. K. et al. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260, 7651–7658 (1985).

    Article  CAS  PubMed  Google Scholar 

  75. Rozen, F. et al. directional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10, 1134–1144 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Peck, M. L. & Herschlag, D. Adenosine 5′-O-(3-thio)triphosphate (ATPγS) is a substrate for the nucleotide hydrolysis and RNA unwinding activities of eukaryotic translation initiation factor eIF4A. RNA 9, 1180–1187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 2180–2193 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Landeka, I., Filipic-Rocak, S., Zinic, B. & Weygand-Durasevic, I. Characterization of yeast seryl-tRNA synthetase active site mutants with improved discrimination against substrate analogues. Biochim. Biophys. Acta 1480, 160–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Preugschat, F., Averett, D. R., Clarke, B. E. & Porter, D. J. A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain. J. Biol. Chem. 271, 24449–24457 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Fuller-Pace, F. V., Nicol, S. M., Reid, A. D. & Lane, D. P. DbpA: a DEAD box protein specifically activated by 23S rRNA. EMBO J. 12, 3619–3626 (1993). This report describes a specific and strong stimulation of the ATPase activity of DbpA in the presence of a specific RNA, the 23S rRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diges, C. M. & Uhlenbeck, O. C. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J. 20, 5503–5512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rogers, G. W. J., Richter, N. J. & Merrick, W. C. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem. 274, 12236–12244 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Villa, T., Pleiss, J. A. & Guthrie, C. Spliceosomal snRNAs: Mg(2+)-dependent chemistry at the catalytic core? Cell 109, 149–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Soultanas, P. & Wigley, D. B. Unwinding the 'Gordian knot' of helicase action. Trends Biochem. Sci. 26, 47–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, Y. & Liu, Z. R. The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J. Biol. Chem. 277, 12810–12815 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, Y. Z., Zhuang, W. & Prohofsky, E. W. Energy flow considerations and thermal fluctuational opening of DNA base pairs at a replicating fork: unwinding consistent with observed replication rates. J. Biomol. Struct. Dyn. 10, 415–427 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Du, M. X. et al. Comparative characterization of two DEAD-box RNA helicases in superfamily II: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase. Biochem. J. 363, 147–155 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jankowsky, E., Gross, C. H., Shumann, S. & Pyle, A. M. The DexH protein NPH-II is a processive and directional molecular motor for unwinding RNA. Nature 403, 447–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Fatica, A. & Tollervey, D. Insights into the structure and function of a guide RNP. Nature Struct. Biol. 10, 237–239 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Chamot, D. & Owttrim, G. W. Regulation of cold shock-induced RNA helicase gene expression in the Cyanobacterium anabaena sp. strain PCC 7120. J. Bacteriol. 182, 1251–1256 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lim, J., Thomas, T. & Cavicchioli, R. Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J. Mol. Biol. 297, 553–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β- subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fry, D. C., Kuby, S. A. & Mildvan, A. S. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc. Natl Acad. Sci. USA 83, 907–911 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pause, A. & Sonenberg, N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643–2654 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schwer, B. & Meszaros, T. RNA helicase dynamics in pre-mRNA splicing. EMBO J. 19, 6582–6591 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Laggerbauer, B., Lauber, J. & Luhrmann, R. Identification of an RNA-dependent ATPase activity in mammalian U5 snRNPs. Nucl. Acids Res. 24, 868–875 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boudet, N., Aubourg, S., Toffano-Nioche, C., Kreis, M. & Lecharny, A. Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res. 11, 2101–214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abdelhaleem, M., Maltais, L. & Wain, H. The human DDX and DHX gene families of putative RNA helicases. Genomics 81, 618–622 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the laboratory and the helicase community for continuous discussion. We acknowledge highly stimulating discussions and pertinent comments about this manuscript from M. Altmann, D. Belin, O. Cordin, F. Fuller-Pace, T. Lacombe, G. Owttrim, N.K. Tanner and the three referees. Work in our laboratory is supported by the Swiss National Science Foundation and the state of Geneva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Linder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Cyt-19

DbpA

mHel61

Rhlb

SrmB

YxiN

Flybase

Vasa

The Protein Data Bank

1HV8

Saccharomyces genome database

Brr2

Dbp5

Ded1

Dhh1

Dob1

eIF4A

Mrh4

Mss116

Mud2

Prp5

Prp16

Prp22

Prp28

Prp43

Ski2

Sub2

Swiss-Prot

DP103

FURTHER INFORMATION

RNA helicases

Swiss-PDBviewer

BLAST searches for putative helicases

Glossary

HELICASE

An enzyme that unwinds double-stranded nucleic acids in an energy-dependent manner.

SKI2 FAMILY

RNA helicases that are related to DEAD-box proteins and named after Ski2, a yeast protein that is involved in RNA turnover.

WALKER A AND B MOTIFS

Amino-acid consensus sequences that are present in nucleotide-triphosphate (NTP)-binding proteins named after J. E. Walker who first described these motifs.

ARGININE FINGER

A catalytic residue that was first defined for Ras-GTPase-activating proteins (RasGAPs), and that supplies a catalytic arginine residue into the active site of Ras to increase the reaction rate.

SMALL NUCLEAR RNA (snRNA)

A small RNA molecule that functions in the nucleus by guiding the assembly of macromolecular complexes on the target RNA to allow site-specific modifications or processing reactions to occur.

RNPase

An enzyme that causes the dissociation of a ribonucleoprotein (RNP) complex by disrupting protein–RNA interactions.

PSEUDO-URIDYLATION

The conversion of a uridine residue within an RNA chain into a pseudouridine residue, which requires the scission and reattachment of the base to the sugar.

SMALL NUCLEOLAR RNA (snoRNA)

A small RNA molecule that functions in ribosome biogenesis in the nucleolus by guiding the assembly of macromolecular complexes on the target RNA to allow site-specific modifications or processing reactions to occur.

GROUP I INTRONS

A class of self-splicing introns, the excision of which in vivo is assisted by trans-acting protein factors.

KINETICALLY TRAPPED

A particular substrate conformation that cannot be used further without it being refolded with external assistence.

GUIDE RNA (gRNA)

A small RNA molecule that is complementary to a sequence that is to be modified or processed, and that guides proteins to this target.

RNase E

An exonucleolytic RNase that digests RNA in the 3′→5′ direction

POLYNUCLEOTIDE-PHOSPHORYLASE

(PNPase). An enzyme that hydrolyzes single-stranded polyribonucleotides processively in the 3′→5′ direction.

DEGRADOSOME

A complex of RNase E and polynucleotidephosphorylase (PNPase) that degrades RNA. The degradosome is assisted by a DEAD-box RNA helicase to allow degradation of structured RNAs

EXOSOME

A complex of several exonucleases that, assisted by RNA helicases, degrades RNAs in the nucleus and the cytoplasm.

SURVIVAL OF MOTOR NEURONS (SMN) PROTEIN

Product of the spinal muscular atrophy (SMA) disease gene. SMN is present in a large complex that functions in snRNP assembly, pre-mRNA splicing and transcription.

MICHAELIS CONSTANT

(Km). The Michaelis constant is equal to the substrate concentration at which the reaction rate is half its maximal value. A high Km indicates a weak binding, and a low Km indicates strong binding.

SERYL tRNA SYNTHETASE

An enzyme that catalyses the attachment of serine to the 3′ end of tRNAs containing the anticodons that correspond to serine. They belong to the family of aminoacyl-tRNA synthetases.

TURNOVER NUMBERS

(kcat). The number of substrate molecules that are converted into product by an enzyme molecule in a unit of time when the enzyme is fully saturated with substrate.

ΔG

The difference in free energy of a system at constant pressure and temperature. The more negative the ΔG, the more stable the duplex.

MICROSPORIDIA

Obligate intracellular parasites that have a reduced genome content.

NUCLEOMORPH

A vestigial nucleus-like structure that harbours the smallest eukaryotic genomes of an algal endosymbiont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocak, S., Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5, 232–241 (2004). https://doi.org/10.1038/nrm1335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing