HIGHLIGHTS

HIGHLIGHT ADVISORS

UELI AEBI UNIVERSITY OF BASEL, SWITZERLAND

TOM L. BLUNDELL UNIVERSITY OF CAMBRIDGE, UK

JOAN S. BRUGGE HARVARD MEDICAL SCHOOL, BOSTON, MA, USA

PASCALE COSSART INSTITUT PASTEUR, PARIS, FRANCE

PAMELA GANNON CELL AND MOLECULAR BIOLOGY ONLINE

SUSAN M. GASSER UNIVERSITY OF GENEVA. SWITZERLAND

JEAN GRUENBERG LINIVERSITY OF GENEVA SWITZERLAND

III RICH HARTI

MAX-PLANCK-INSTITUTE, MARTINSRIED, GERMANY

STEPHEN P. JACKSON WELLCOME/CRC INSTITUTE. CAMBRIDGE, UK

WALTER NEUPERT MUNICH UNIVERSITY, GERMANY

TONY PAWSON

SAMUEL LUNENFELD RESEARCH INSTITUTE, TORONTO, CANADA

NORBERT PERRIMON HARVARD MEDICAL SCHOOL, BOSTON, MA, USA

THOMAS D. POLLARD

YALE LINIVERSITY. NEW HAVEN, CT, USA

IOHN C. REED

THE BURNHAM INSTITUTE. LA JOLLA, CA, USA

ANNE RIDLEY

LUDWIG INSTITUTE FOR CANCER RESEARCH, LONDON, UK

KAREN VOUSDEN

BEATSON INSTITUTE FOR CANCER RESEARCH, GLASGOW, UK

MEMBRANE FUSION

Membrane fusion is initiated by cognate SNARE proteins (soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptors) - that is, by specific t-SNAREs on the target membrane (there are three on intracellular membranes) and by a specific v-SNARE on the vesicle membrane. SNARE-mediated fusion is highly specific, but this specificity has only been tested using four SNAREs at a time between two bilayers. As every compartment in the secretory pathway can contain many SNAREs in a single bilayer, Rothman and colleagues decided to study the effect of a fifth SNARE on four cognate SNAREs and, in The Journal of Cell Biology, they report the identification of a new functional class of

The authors focused their study on two functionally distinct t-SNARE complexes from the yeast Golgi. Sed5–Bos1–Sec22 (t_{cir}) binds to the v-SNARE Bet1 (v_{cis}) , and the concentration of these four SNARE proteins increases towards the cis-Golgi. The other t-SNARE complex Sed5–Gos1–Ykt6 (t_{trans}) binds to the v-SNARE Sft1 $(v_{\mbox{\tiny trans}})$ and, although the concentration of v_{trans} increases towards the cis-Golgi, t_{trans} probably has a more even distribution.

Rothman and co-workers studied the effect on v_{cis} -t_{cis} and v_{trans} -t_{trans} fusion of including increasing concentrations of a fifth non-cognate SNARE in the t-SNARE-containing liposomes. They found that the

v_{cis}-t_{cis} fusion reaction was strongly inhibited by Gos1 and Sft1, and that the v_{trans}-t_{trans} reaction was inhibited Fine-tuning by Bet1, Bos1 and Sec22. This work therefore establishes the existence of i-SNAREs, and highlights an interesting pattern — cis-Golgi SNAREs inhibit the fusion that is triggered by trans-Golgi SNAREs and vice versa.

So, how do i-SNAREs inhibit fusion? An i-SNARE could either replace a cognate SNARE protein of the t-SNARE complex to form a non-functional tetrameric complex (competitive inhibition), or could bind to the cognate SNARE complex to form a non-functional oligomeric complex (non-competitive inhibition). To distinguish between these possibilities, the authors studied whether high concentrations of one of the cognate t-SNAREs could compete to suppress the effects of an i-SNARE. Their results showed that, in the case of v_{cis}-t_{cis} fusion, the i-SNARE (Gos1 or Sft1) replaces Bos1 to form a nonfunctional tetrameric complex (competitive inhibition). However, in the case of $v_{trans} - t_{trans}$ fusion, the mechanism of i-SNARE inhibition could not be established.

Finally, Rothman and colleagues studied what effect i-SNAREs might have on the specificity of membrane fusion in the Golgi, and used a liposome-fusion assay to recreate the unique SNARE composition that is found in each of the sequential compartments of the Golgi. They showed, for example, that the fusion of v_{cis} with the trans-Golgi is ~3% of that with the cis-Golgi when i-SNAREs are present, but increases to 40% when both Gos1 and Sft1 are absent. Combining the distributions of i-SNAREs with those of v- and

t-SNAREs therefore fine-tunes the specificity of membrane fusion.

Rachel Smallridge References and links

ORIGINAL RESEARCH PAPER Varlamov, O. et al. i-SNARE: inhibitory SNAREs that fine-tune the specificity of membrane fusion. J. Cell Biol. 164, 79-88 (2004)

FURTHER READING Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. *Nature Rev. Mol. Cell Biol.* **2**, 98–106 (2001) WEB SITE

James Rothman's laboratory:

http://www.mskcc.org/mskcc/html/10879.cfm