Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Traffic jams affect plant development and signal transduction

A Correction to this article was published on 01 April 2004

Key Points

  • The vacuole is necessary for plant viability — the recent isolation and characterization of Arabidopsis thaliana vacuoless 1, a mutant impaired in vacuole formation and function, is embryonic lethal.

  • A functional vacuole is necessary for the shoot gravitropic response. Two A. thaliana mutations that affect vacuole formation, sgr2 and zig, have shoot gravitropic response defects.

  • Arabidopsis SNARE proteins have been implicated in the following functional pathways: autophagy, shoot gravitropism, tissue specification, cytokinesis, abscisic acid and stress responses, as well as plant pathogen responses.

  • Vesicle cycling is linked to plant hormone responses: PIN proteins, which are auxin-efflux carrier proteins and involved in the polar transport of auxin, have been shown to cycle between the plasma membrane and an uncharacterized endosomal compartment in an actin-dependent manner.

  • We also discuss emerging methods and new approaches to the functional analysis of vacuolar and endomembrane systems. Among these are new tools for visualizing vacuole morphology, new high-throughput methods, and chemical-genetic screens.

Abstract

Analysis of the Arabidopsis thaliana endomembrane system has shown that plant cell viability depends on a properly functioning vacuole and intact vesicular trafficking. The endomembrane system is also essential for various aspects of plant development and signal transduction. In this review, we discuss examples of these newly discovered roles for the endomembrane system in plants, and new experimental approaches and technologies that are based on high-throughput screens, which combine chemical genetics and automated confocal microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The plant endomembrane system.
Figure 2: The role of vacuoles in shoot gravitropism.
Figure 3: The VTI family of v-SNAREs.
Figure 4: Polar auxin transport and vesicle cycling.
Figure 5: Cytokinesis pathways.

Similar content being viewed by others

References

  1. De, D. N. Plant Cell Vacuoles: An Introduction, (CSIRO Publishing, Collingwood, VIC, Australia, 2000).

    Book  Google Scholar 

  2. Bassham, D. C. & Raikhel, N. V. Unique features of the plant vacuolar sorting machinery. Curr. Opin. Cell Biol. 12, 491–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ueda, T. & Nakano, A. Vesicular traffic: an integral part of plant life. Curr. Opin. Plant Biol. 5, 513–517 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Martinoia, E., Massonneau, A. & Frangne, N. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41, 1175–1186 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Blumwald, E., Aharon, G. S. & Apse, M. P. Sodium transport in plant cells. Biochim. Biophys. Acta 1465, 140–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Sze, H., Liang, F., Hwang, I., Curran, A. C. & Harper, J. F. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 433–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Jimenez-Aparicio, A. & Gutierrez-Lopez, G. Production of food related colorants by culture of plant cells. The case of betalains. Adv. Exp. Med. Biol. 464, 195–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Netting, A. G. pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions. II. Modifications in modes of metabolism induced by variation in the tension on the water column and by stress. J. Exp. Bot. 53, 151–173 (2002).

    CAS  PubMed  Google Scholar 

  9. Cosgrove, D. J. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int. J. Plant Sci. 154, 10–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Kuriyama, H. & Fukuda, H. Developmental programmed cell death in plants. Curr. Opin. Plant Biol. 5, 568–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, H., Ougham, H. J., Wagstaff, C. & Stead, A. D. Defining senescence and death. J. Exp. Bot. 54, 1127–1132 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hortensteiner, S. & Feller, U. Nitrogen metabolism and remobilization during senescence. J. Exp. Bot. 53, 927–937 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Hall, J. L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Facchini, P. J. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 29–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Neumann, U., Brandizzi, F. & Hawes, C. Protein transport in plant cells: in and out of the Golgi. Ann. Bot. (London) 92, 167–180 (2003).

    Article  CAS  Google Scholar 

  16. Robinson, D. G., Hinz, G. & Holstein, S. E. The molecular characterization of transport vesicles. Plant Mol. Biol. 38, 49–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura, K. & Matsuoka, K. Protein targeting to the vacuole in plant cells. Plant Physiol. 101, 1–5 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmed, S. U. et al. The plant vacuolar sorting receptor AtELP is involved in transport of NH2-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J. Cell Biol. 149, 1335–1344 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neuhaus, J. M. & Rogers, J. C. Sorting of proteins to vacuoles in plant cells. Plant Mol. Biol. 38, 127–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Shimada, T. et al. Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA (2003).

  21. Bassham, D. C., Gal, S., da Silva Conceicao, A. & Raikhel, N. V. An Arabidopsis syntaxin homologue isolated by functional complementation of a yeast pep12 mutant. Proc. Natl Acad. Sci. USA 92, 7262–7266 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. da Silva Conceicao, A. et al. The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell 9, 571–582 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng, H., von Mollard, G. F., Kovaleva, V., Stevens, T. H. & Raikhel, N. V. The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol. Biol. Cell. 10, 2251–2264 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsuoka, K., Bassham, D. C., Raikhel, N. V. & Nakamura, K. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130, 1307–1318 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Di Sansebastiano, G. P., Paris, N., Marc-Martin, S. & Neuhaus, J. M. Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuoles. Plant Physiol. 126, 78–86 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bassham, D. C. & Raikhel, N. V. Plant cells are not just green yeast. Plant Physiol. 122, 999–1001 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rojo, E., Gillmor, C. S., Kovaleva, V., Somerville, C. R. & Raikhel, N. V. VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev. Cell 1, 303–310 (2001). This study was the first demonstration that a functional vacuole is necessary for plant viability.

    Article  CAS  PubMed  Google Scholar 

  28. Yeung, E. C. & Meinke, D. W. Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5, 1371–1381 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sato, T. K., Rehling, P., Peterson, M. R. & Emr, S. D. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol. Cell 6, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Seals, D. F., Eitzen, G., Margolis, N., Wickner, W. T. & Price, A. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl Acad. Sci. USA 97, 9402–9407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wurmser, A. E., Sato, T. K. & Emr, S. D. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J. Cell Biol. 151, 551–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rojo, E., Zouhar, J., Kovaleva, V., Hong, S. & Raikhel, N. V. The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in Arabidopsis. Mol. Biol. Cell 14, 361–369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sevrioukov, E. A., He, J. P., Moghrabi, N., Sunio, A. & Kramer, H. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Mol. Cell 4, 479–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Tasaka, M., Kato, T. & Fukaki, H. The endodermis and shoot gravitropism. Trends Plant Sci. 4, 103–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Muday, G. K. & Haworth, P. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport. Plant Physiol. Biochem. 32, 193–203 (1994).

    CAS  PubMed  Google Scholar 

  36. Rashotte, A. M., Brady, S. R., Reed, R. C., Ante, S. J. & Muday, G. K. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 122, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rashotte, A. M., DeLong, A. & Muday, G. K. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13, 1683–1697 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Sinclair, W. & Trewavas, A. J. Calcium in gravitropism. A re-examination. Planta 203, S85–S90 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Perera, I. Y., Heilmann, I. & Boss, W. F. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc. Natl Acad. Sci. USA 96, 5838–5843 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perera, I. Y., Heilmann, I., Chang, S. C., Boss, W. F. & Kaufman, P. B. A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol. 125, 1499–1507 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fasano, J. M. et al. Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13, 907–921 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scott, A. C. & Allen, N. S. Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol. 121, 1291–1298 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kato, T., Morita, M. T. & Tasaka, M. Role of endodermal cell vacuoles in shoot gravitropism. J. Plant Growth Regul. 21, 113–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Fukaki, H. et al. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 14, 425–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Caspar, T. & Pickard, B. G. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177, 185–197 (1989).

    Article  PubMed  Google Scholar 

  47. Fukaki, H., Fujisawa, H. & Tasaka, M. SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol. 110, 945–955 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamauchi, Y., Fukaki, H., Fujisawa, H. & Tasaka, M. Mutations in the SGR4, SGR5 and SGR6 loci of Arabidopsis thaliana alter the shoot gravitropism. Plant Cell Physiol. 38, 530–535 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Kato, T. et al. SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14, 33–46 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yano, D. et al. A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc. Natl Acad. Sci. USA 100, 8589–8594 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanderfoot, A. A., Kovaleva, V., Bassham, D. C. & Raikhel, N. V. Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell 12, 3733–3743 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morita, M. T. et al. Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14, 47–56 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bassham, D. C., Sanderfoot, A. A., Kovaleva, V., Zheng, H. & Raikhel, N. V. AtVPS45 complex formation at the trans-Golgi network. Mol. Biol. Cell 11, 2251–2265 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Surpin, M. et al. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15, 2885–2899 (2003). The authors assigned two related members of a v-SNARE family to different functional pathways and showed that they could substitute for each other on both molecular and functional levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R. & Vierstra, R. D. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 277, 33105–33114 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hanaoka, H. et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181–1193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Friml, J. et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Muday, G. K., Peer, W. A. & Murphy, A. S. Vesicular cycling mechanisms that control auxin transport polarity. Trends Plant Sci. 8, 301–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Steinmann, T. et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Hadfi, K., Speth, V. & Neuhaus, G. Auxin-induced developmental patterns in Brassica juncea embryos. Development 125, 879–887 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Busch, M., Mayer, U. & Jurgens, G. Molecular analysis of the Arabidopsis pattern formation of gene GNOM: gene structure and intragenic complementation. Mol. Gen. Genet. 250, 681–691 (1996).

    CAS  PubMed  Google Scholar 

  62. Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003). The authors used a new approach where they engineered a BFA-resistant version of GNOM to show the specificity of GNOM for polar auxin transport.

    Article  CAS  PubMed  Google Scholar 

  63. Geldner, N., Friml, J., Stierhof, Y. D., Jurgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001). The first study demonstrating that vesicle trafficking has a key role in polar auxin transport.

    Article  CAS  PubMed  Google Scholar 

  64. Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809 (2002).

    Article  PubMed  Google Scholar 

  65. Petrasek, J. et al. Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol. 131, 254–263 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bednarek, S. Y. & Falbel, T. G. Membrane trafficking during plant cytokinesis. Traffic 3, 621–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Lukowitz, W., Mayer, U. & Jurgens, G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84, 61–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Lauber, M. H. et al. The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485–1493 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Volker, A., Stierhof, Y. D. & Jurgens, G. Cell cycle-independent expression of the Arabidopsis cytokinesis-specific syntaxin KNOLLE results in mistargeting to the plasma membrane and is not sufficient for cytokinesis. J. Cell Sci. 114, 3001–3012 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Assaad, F. F., Huet, Y., Mayer, U. & Jurgens, G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J. Cell Biol. 152, 531–543 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Waizenegger, I. et al. The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr. Biol. 10, 1371–1374 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Sanderfoot, A. A., Assaad, F. F. & Raikhel, N. V. The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol. 124, 1558–1569 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sanderfoot, A. A. & Raikhel, N. V. In The Arabidopsis Book (eds Somerville, C. R. & Meyerowitz, E. M.) (American Society of Plant Biologists, Rockville, Maryland, 2003).

    Google Scholar 

  74. Heese, M. et al. Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J. Cell Biol. 155, 239–249 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zheng, H. et al. NPSN11 is a cell plate-associated SNARE protein that interacts with the syntaxin KNOLLE. Plant Physiol. 129, 530–539 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Latterich, M., Frohlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Rancour, D. M., Dickey, C. E., Park, S. & Bednarek, S. Y. Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiol. 130, 1241–1253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Falbel, T. G. et al. SCD1 is required for cytokinesis and polarized cell expansion in Arabidopsis thaliana [corrected]. Development 130, 4011–4024 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Shinozaki, K. & Yamaguchi-Shinozaki, K. Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327–334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schroeder, J. I., Kwak, J. M. & Allen, G. J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Leyman, B., Geelen, D., Quintero, F. J. & Blatt, M. R. A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283, 537–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Geelen, D. et al. The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: evidence from competition with its cytosolic domain. Plant Cell 14, 387–406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu, J. et al. OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14, 3009–3028 (2002). First in planta demonstration of an expanded role for plant syntaxin proteins in signal transduction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Qi, J. et al. Regulation of the amiloride-sensitive epithelial sodium channel by syntaxin 1A. J. Biol. Chem. 274, 30345–30348 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Naren, A. P. et al. Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms. Nature 390, 302–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Collins, N. C. et al. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977 (2003). First evidence of SNARE involvement in plant pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  87. Avila, E. L. et al. Tools to study plant organelle biogenesis. Point mutation lines with disrupted vacuoles and high-speed confocal screening of green fluorescent protein-tagged organelles. Plant Physiol. 133, 1673–1676 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bishop, A. C. & Shokat, K. M. Acquisition of inhibitor-sensitive protein kinases through protein design. Pharmacol. Ther. 82, 337–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Weiss, E. L., Bishop, A. C., Shokat, K. M. & Drubin, D. G. Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nature Cell Biol. 2, 677–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, Y., Dai, X., Blackwell, H. E., Schreiber, S. L. & Chory, J. SIR1, an upstream component in auxin signaling identified by chemical genetics. Science 301, 1107–1110 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Blackwell, H. E. & Zhao, Y. Chemical genetic approaches to plant biology. Plant Physiol. 133, 448–455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yeh, J. R. & Crews, C. M. Chemical genetics: adding to the developmental biology toolbox. Dev. Cell 5, 11–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Slepchenko, B. M., Schaff, J. C., Macara, I. & Loew, L. M. Quantitative cell biology with the virtual cell. Trends Cell Biol. 13, 570–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Smith, A. E., Slepchenko, B. M., Schaff, J. C., Loew, L. M. & Macara, I. G. Systems analysis of Ran transport. Science 295, 488–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Vitale, A. & Raikhel, N. V. What do proteins need to reach different vacuoles? Trends Plant Sci. 4, 149–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  99. Sanderfoot, A. A., Pilgrim, M., Adam, L. & Raikhel, N. V. Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 13, 659–666 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Muller, I. et al. Syntaxin specificity of cytokinesis in Arabidopsis. Nature Cell Biol. 5, 531–534 (2003).

    Article  PubMed  CAS  Google Scholar 

  101. Nebenfuhr, A., Ritzenthaler, C. & Robinson, D. G. Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol. 130, 1102–1108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jackson, C. L. & Casanova, J. E. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Ritzenthaler, C. et al. Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14, 237–261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP–Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Tse, Y. C. et al. Identification of multivesicular bodies as prevacuolar compartments in tobacco BY–2 cells. Plant Cell (in the press).

  106. Estelle, M. Transporters on the move. Nature 413, 374–375 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to many authors for the omission of references to their work owing to space restrictions. We are grateful to D. Bassham, S. Bednarek, T. Friedman, G. Hicks, A. Sanderfoot, A. Vitale and the reviewers for critical reading of the manuscript. Research in the authors' laboratory is supported by grants from the National Science Foundation and from the Department of Energy, Division of Energy Biosciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

TAIR

gnom

KNOLLE

keule

NPSN11

pgm

PIN1

scr

SGR2

SGR3

SGR4

shr

SYP21

SYP22

SYP31

SYP61

SYP121

vcl1

VPS33

VPS45

VSR1

VTI12

VTI13

Further information

Arabidopsis SNAREs

Glossary

TURGOR PRESSURE

Force generated by water pushing outward on the plant cell wall, resulting in plant rigidity. The loss of turgor pressure causes wilting.

PHENOLICS

A diverse group of secondary metabolites. They function in the defence responses against herbivores and pathogens; provide mechanical support; absorb harmful UV light; contribute to taste, odour and flower colour; attract pollinators and fruit dispensers; and can reduce competition by inhibiting the growth of nearby plants.

ALKALOIDS

Generally, nitrogen-containing basic plant compounds that are often used as pharmacological agents, although there are examples of alkaloids that are not basic and/or of plant origin. Alkaloids participate in plant defences and are secreted in response to tissue damage. Compounds include nicotine, caffeine, quinine, cocaine, heroin, codeine and morphine.

PRE-VACUOLAR COMPARTMENT

(PVC). An intermediate compartment between the late endosome and the vacuole, or between the trans-Golgi network and the vacuole.

SWEET POTATO SPORAMIN

The major storage protein (up to 80% of the total soluble protein) in the tuberous roots of sweet potatoes.

BARLEY ALEURAIN

A vacuolar thiol protease with high homology to mammalian lysosomal cathepsin H.

NPIR MOTIF

An amino-terminal sequence motif in precursor proteins that is required for correct targeting to the vacuole.

ELP/VSR1

(Arabidopsis thaliana epithelial-growth-factor-receptor-like protein). A homologue of pea BP-80 that binds NTPP sequence motifs in a pH-sensitive manner. Recently renamed as VSR1 (vacuolar sorting receptor).

BP-80

An amino-terminal propeptide (NTPP) cargo receptor protein originally purified from clathrin-coated-vesicle fractions that were isolated from pea plants. BP-80 binds NTPP sorting motifs at pH 6.0 and dissociates from them at pH 5.5.

SNARE

(soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptor). SNAREs are a family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity in the vacuolar system. They can be divided into vesicle membrane (v)-SNAREs and target membrane (t)-SNAREs on the basis of their localization.

APOPLAST

The continuous system of intercellular spaces in plant tissues.

AUTOPHAGOSOME

A double-membrane vesicle that engulfs portions of the cytosol, and is ingested by the central vacuole where it is broken down by hydrolytic enzymes.

TORPEDO STAGE

One of the stages of A. thaliana embryonic development, which also include the preglobular, globular, heart and mature embryo stages. Also known as the mid-maturation stage.

TONOPLAST

The delimiting membrane of the central vacuole.

CLASS-C VPS PROTEIN COMPLEX

A protein complex, first described in yeast, that is required for the docking stage of the homotypic fusion of vacuoles and the heterotypic fusion of vesicles with the tonoplast.

HOMOTYPIC FUSION

The fusion of identical compartments or vesicles.

SYNTAXINS

A subset of SNARE proteins originally isolated from the presynaptic plasma membrane of neuronal and secretory cells.

COILED-COIL DOMAIN

A protein structural domain that mediates subunit oligomerization. Coiled coils contain between two and five α-helices that twist around each other to form a supercoil.

PHOTOTROPIC RESPONSE

Plant growth in the direction of light.

INFLORESCENCE STEM

The post-vegetative phase of stem growth that produces floral organs.

T-DNA

DNA transferred from Agrobacterium tumefaciens and stably integrated into plant genomes. The insertion is random and might therefore disrupt genes, causing a mutation at the insertion point.

DETACHED-LEAF ASSAY

Standard assay used to evaluate the effects of plant stress induced by pathogens or mutations.

PHYLLOTAXY

The spatial arrangement of leaves around the plant stem.

FASCIATED

A defect in stem development where normally cylindrical stems become flattened.

ARF-GEF

(guanine nucleotide-exchange factor (GEF) for small G proteins of the ARF class). ARFs belong to the Ras superfamily of small GTP-binding proteins. GEFs mediate the conversion of GTP to GDP.

CYTOKINESIS

The distribution of cytoplasm to daughter cells following nuclear division.

COPI COAT PROTEIN

Coat protein of vesicles that are involved in ER and Golgi trafficking.

CLATHRIN

A protein that coats vesicles that originate on the trans-Golgi network (TGN) or plasma membrane.

SILIQUES

The fruit of A. thaliana and other cruciferous plants.

DIATOM

Unicellular alga, the cell wall of which is composed of silica.

OOMYCETES

A phylum of filamentous protists that includes downy mildews and water moulds.

AAA PROTEINS

ATPases that are associated with various cellular activities.

STOMATA

Pores in the plant cell epidermis that are composed of two guard cells. Osmotic pressure regulates the size of the guard cells, which in turn control the size of the stomatal opening. The size of the stomatal opening regulates the rate of gas exchange.

WD-40 REPEAT

Protein motif that is composed of a 40-amino-acid repeat that forms a β-propeller sheet. Proteins that contain WD-40 repeats participate in a wide array of cellular functions, including G-protein-mediated signal transduction, transcriptional regulation, RNA processing, and regulation of vesicle formation and trafficking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surpin, M., Raikhel, N. Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5, 100–109 (2004). https://doi.org/10.1038/nrm1311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing