Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ageing, repetitive genomes and DNA damage


The mitochondrial production of reactive oxygen species is inversely proportional to longevity in animals. A key question now is, which molecules, among those that are oxidized, affect the lifespan of the organism most significantly?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Types of oxidative DNA damage.
Figure 2: The homologous and non-homologous DNA end-joining pathways.


  1. 1

    Finch, C. E. Longevity, Senescence, and the Genome 922 (University of Chicago, Chicago, 1990).

    Google Scholar 

  2. 2

    Barja, G. Rate of generation of oxidative stress-related damage and animal longevity. Free Radic. Biol. Med. 33, 1167–1172 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Hekimi, S. & Guarente, L. Genetics and the specificity of the aging process. Science 299, 1351–1354 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Longo, V. & Finch, C. E. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299, 1342–1346 (2003).

    Article  Google Scholar 

  7. 7

    Tartar, M., Bartke, A. & Antebi, A. The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351 (2003).

    Article  Google Scholar 

  8. 8

    Speakman, J. R., Selman, C., McLaren, J. S. & Harper, E. J. Living fast, dying when? The link between aging and energetics. J. Nutr. 132, 1583S–1597S (2002).

    CAS  Article  Google Scholar 

  9. 9

    Sohal, R. S., Mockett, R. J. & Orr, W. C. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic. Biol. & Med. 33, 575–586 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Tower, J. Aging mechanisms in fruit flies. BioEssays 18, 799–807 (1996).

    CAS  Article  Google Scholar 

  11. 11

    De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Ku, H. H., Brunk, U. T. & Sohal, R. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 15, 621–627 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Sohal, R. S., Ku, H. H., Agarwal, S., Forster, M. & Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction. Mech. Ageing Dev. 74, 121–133 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Gredilla, R., Sanz, A., Lopez-Torres, M. & Barja, G. Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J. 15, 1589–1591 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Holmes, D. J., Fluckiger, R. & Austad, S. N. Comparative biology of aging in birds: an update. Exp. Gerontol. 36, 869–884 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Austad, S. N. & Fischer, K. E. Mammalian aging, metabolism, and ecology: evidence from bats and marsupials. J. Gerontol. 46, B47–B53 (1991).

    CAS  Article  Google Scholar 

  18. 18

    Imlay, J. A. & Linn, S. DNA damage and oxygen radical toxicity. Science 240, 1302–1309 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Imlay, J. A. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol. 46, 111–153 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (American Society of Microbiology Press, Washington D. C., 1995).

    Google Scholar 

  21. 21

    Klungland, A. et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA 96, 13300–13305 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Herrero, A. & Barja, G. 8-Oxodeoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging. Aging 11, 294–300 (1999).

    CAS  PubMed  Google Scholar 

  23. 23

    Hamilton, M. L. et al. Does oxidative damage to DNA increase with age? Proc. Natl Acad. Sci. USA 98, 10469–10474 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Dolle, M. E., Synder, W. K., Dunson, D. B. & Vijg, J. Mutational fingerprints of aging. Nucl. Acids Res. 30, 545–549 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Prisee, K. M., Davies, S. & Michael, B. D. Cell killing and DNA damage in Chinese hamster V79 cells treated with hydrogen peroxide. Int. J. Rad. Biol. 55, 583–592 (1989).

    Article  Google Scholar 

  26. 26

    Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–603 (1979).

    CAS  Article  Google Scholar 

  27. 27

    National Radiation Protection Board. Living with Radiation (Reading, England, 1986).

  28. 28

    Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev. Mol. Cell. Biol. 4, 712–720 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Kraus, E., Leung, W. Y. & Haber, J. E. Break-induced replication: a review and an example in budding yeast. Proc. Natl Acad. Sci. USA 98, 8255–8262 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Roth, D. & Wilson, J. in Genetic Recombination (eds Kucherlapapti, R. & Smith, G. R.) 621–653 (American Society for Microbiology, Washington D. C., 1988).

    Google Scholar 

  32. 32

    Lieber, M. R. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4, 77–85 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Ferguson, D. O. et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl Acad. Sci. USA 97, 6630–6633 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Karanjawala, Z. E., Grawunder, U., Hsieh, C. -L. & Lieber, M. R. The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. Curr. Biol. 9, 1501–1504 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Karanjawala, Z., Murphy, N., Hinton, D. R., Hsieh, C. -L. & Lieber, M. R. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in double-strand break repair mutants. Curr. Biol. 12, 397–402 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Gilley, D. et al. DNA-PKcs is critical for telomere capping. Proc. Natl Acad. Sci. USA 98, 15084–15088 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Martin, G. M., Smith, A. C., Ketterer, D. J., Ogburn, C. E. & Disteche, C. M. Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice. Israel J. Med. Sci. 21, 296–301 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Strachen, T. & Read, A. P. Human Molecular Genetics (Wiley–Liss, New York, 1999).

    Google Scholar 

  39. 39

    Vogel, H., Lim, D. -S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA 96, 10770–10775 (1999).

    CAS  Article  Google Scholar 

  40. 40

    Schuler, W. et al. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46, 963–972 (1986).

    CAS  Article  Google Scholar 

  41. 41

    Okazaki, K., Nishikawa, S. -I. & Sakano, H. Aberrant immunoglobulin gene rearrangement in scid mouse bone marrow cells. J. Immunol. 141, 1348–1352 (1988).

    CAS  PubMed  Google Scholar 

  42. 42

    Malynn, B. A. et al. The scid defect affects the final step of the immunoglobulin VDJ recombinase mechanism. Cell 54, 453–460 (1988).

    CAS  Article  Google Scholar 

  43. 43

    Gu, Y., Jin, S., Gao, Y., Weaver, D. T. & Alt, F. W. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc. Natl Acad. Sci. USA 94, 8076–8081 (1997).

    CAS  Article  Google Scholar 

  44. 44

    Gao, Y. et al. A targeted DNA-PKcs-null mutation reveals DNA-PK independent for Ku in V(D)J recombination. Immunity 9, 367–376 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Gu, Y. et al. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc. Natl Acad. Sci. USA 97, 2668–2673 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Adachi, N. & Lieber, M. R. Bidirectional gene organization: a common architectural motif of the human genome. Cell 109, 807–809 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Gu, Y. et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7, 653–665 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Li, G. C. et al. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol. Cell 2, 1–8 (1998).

    CAS  Article  Google Scholar 

  49. 49

    Prince, P. R., Emond, M. J. & Monnat, R. J. Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev. 15, 933–938 (2001).

    CAS  Article  Google Scholar 

  50. 50

    Saintigny, Y., Makienko, K., Swanson, C., Emond, M. J. & Monnat, R. J. Homologous recombination resolution defect in Werner syndrome. Mol. Cell. Biol. 22, 6971–6978 (2002).

    CAS  Article  Google Scholar 

  51. 51

    Li, B. & Comai, L. Functional interaction between Ku and the Werner syndrome protein in DNA end processing. J. Biol. Chem. 275, 28349–28352 (2000).

    CAS  Article  Google Scholar 

  52. 52

    Cooper, M. P. et al. Ku complex interacts with and stimulates the Werner protein. Genes Dev. 14, 907–912 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Lebel, M. & Leder, P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc. Natl Acad. Sci. USA 95, 13097–13102 (1998).

    CAS  Article  Google Scholar 

  54. 54

    Burke, B. & Stewart, C. L. Life at the edge: the nuclear envelope and human disease. Nature Rev. Mol. Cell Biol. 3, 575–585 (2002).

    CAS  Article  Google Scholar 

  55. 55

    Mukherjee, A. B. & Costello, C. Aneuploidy analysis in fibroblasts of human premature aging syndromes by FISH during in vitro cellular aging. Mech. Ageing Dev. 103, 209–222 (1998).

    CAS  Article  Google Scholar 

  56. 56

    Martin, G. M. & Oshima, J. Lessons from human progeroid syndromes. Nature 408, 263–266 (2000).

    CAS  Article  Google Scholar 

  57. 57

    Kanaar, R. & Hoeijmakers, J. H. J. Recombination and joining: different means to the same ends. Genes Funct. 1, 165–174 (1997).

    CAS  Article  Google Scholar 

  58. 58

    van Gent, D. C., Hoeijmakers, J. H. J. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).

    CAS  Article  Google Scholar 

  59. 59

    Floyd, R. A., West, M. & Hensley, K. Oxidative biochemical markers; clues to understanding aging in long-lived species. Exp. Gerontol. 36, 619–640 (2001).

    CAS  Article  Google Scholar 

  60. 60

    Ku, H. H. & Sohal, R. S. Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech. Ageing Dev. 72, 67–76 (1993).

    CAS  Article  Google Scholar 

  61. 61

    Burt, D. W. Origin and evolution of avian microchromosomes. Cytogenet. Gen. Res. 96, 97–112 (2002).

    CAS  Article  Google Scholar 

  62. 62

    Van den Bussche, R. A., Longmire, J. L. & Baker, R. J. How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm. Gen. 6, 521–525 (1995).

    CAS  Article  Google Scholar 

  63. 63

    Buerstedde, J. M. & Takeda, S. Increased ratio of targeted to random integration after transfection of chicken B cells. Cell 67, 179–188 (1991).

    CAS  Article  Google Scholar 

  64. 64

    Ogburn, C. E. et al. Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. J. Gerontol. Biol. Sci. 56A, B468–B474 (2001).

    CAS  Article  Google Scholar 

  65. 65

    Fernandez-Checa, J. C. Redox regulation and signaling lipids in mitochondria apoptosis. Biochem. Biophys. Res. Commun. 304, 471–479 (2003).

    CAS  Article  Google Scholar 

  66. 66

    Blumenthal, H. T. The aging-disease dichotomy: true or false? J. Gerontol. 58A, 138–145 (2003).

    Article  Google Scholar 

  67. 67

    Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  Article  Google Scholar 

  68. 68

    Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    CAS  Article  Google Scholar 

  69. 69

    Gensler, H. L. & Bernstein, H. DNA damage as the primary cause of aging. Quart. Rev. Biol. 56, 279–303 (1981).

    CAS  Article  Google Scholar 

  70. 70

    Karanjawala, Z. E. et al. The embryonic lethality in DNA ligase IV-deficient mice is rescued by deletion of Ku: implications for unifying the heterogeneous phenotypes of NHEJ mutants. DNA Repair 1, 1017–1026 (2002).

    CAS  Article  Google Scholar 

  71. 71

    Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    CAS  Article  Google Scholar 

  72. 72

    Barja, G. & Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum lifespan in the heart and brain of mammals. FASEB J. 14, 312–318 (2000).

    CAS  Article  Google Scholar 

  73. 73

    Dolle, M. E. & Vijg, J. Genome dynamics in aging mice. Genome Res. 12, 1732–1738 (2002).

    CAS  Article  Google Scholar 

  74. 74

    Parrinello, S. et al. Oxygen sensitivity severely limits replicative lifespan of murine fibroblasts. Nature Cell Biol. 5, 741–747 (2003).

    CAS  Article  Google Scholar 

  75. 75

    Friesner, J. & Britt, A. B. Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J. 34, 427–440 (2003).

    CAS  Article  Google Scholar 

  76. 76

    West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell. Biol. 4, 435–445 (2003).

    CAS  Article  Google Scholar 

Download references


This article is dedicated to Dr. H.T. Blumenthal for his continuing contributions to pathology and gerontology. The authors would like to thank H.T. Blumenthal, R. Sohal, N. Arnheim, D. Shibata, D. van den Berg and Y. Ma for comments on the manuscript and C. Finch, A. Britt, E. Hefner, R. Lanner, C. Hsieh, J. Tower and P. Hasty for very helpful discussions. Work in the authors' laboratory is supported by the National Institutes of Health.

Author information



Corresponding author

Correspondence to Michael R. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links



Ataxia telangiectasia


Rothmund–Thomson syndrome

Werner syndrome


DNA ligase IV

Lamin A




Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lieber, M., Karanjawala, Z. Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol 5, 69–75 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing