Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The centennial of the Cajal body

Abstract

Exactly 100 years ago, the Spanish neurobiologist Santiago Ramón y Cajal described a new organelle in the nuclei of vertebrate neurons. Now called the Cajal body, this organelle occurs in many cell types in a wide variety of animals and plants. Recent studies indicate that the Cajal body has numerous roles in the assembly and/or modification of the nuclear-transcription and RNA-processing machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ramón y Cajal.
Figure 2: An original drawing by Ramón y Cajal.
Figure 3: Large and small Cajal bodies.

References

  1. Golgi, C. Sur la structure des cellules nerveuses. Arch. Ital. Biol. 30, 60–71 (1898).

    Google Scholar 

  2. Cajal, S. R. y. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab. Lab. Invest. Biol. (Madrid) 2, 129–221 (1903).

    Google Scholar 

  3. Gall, J. G., Bellini, M., Wu, Z. & Murphy, C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol. Biol. Cell 10, 4385–4402 (1999).

    Article  CAS  Google Scholar 

  4. Jörgensen, M. & Zellenstudien, I. Morphologische Beiträge zum Problem des Eiwachstums. Arch. Zellforsch. 10, 1–126 (1913).

    Google Scholar 

  5. Bier, K., Kunz, W. & Ribbert, D. Struktur und Funktion der Oocytenchromosomen und Nukleolen sowie der Extra-DNS während der Oogenese panoistischer und meroistischer Insekten. Chromosoma 23, 214–254 (1967).

    Article  CAS  Google Scholar 

  6. Gall, J. G. Lampbrush chromosomes from oocyte nuclei of the newt. J. Morphol. 94, 283–352 (1954).

    Article  CAS  Google Scholar 

  7. Callan, H. G. Recent work on the structure of cell nuclei. in Fine Structure of Cells: Symposium of the VIIIth Congress in Cell Biology, Leiden 1954, International Union of Biological Sciences Publ., Series B 21, 89–109 (1954).

  8. Gall, J. G., Stephenson, E. C., Erba, H. P., Diaz, M. O. & Barsacchi-Pilone, G. Histone genes are located at the sphere loci of newt lampbrush chromosomes. Chromosoma 84, 159–171 (1981).

    Article  CAS  Google Scholar 

  9. Callan, H. G., Gall, J. G. & Murphy, C. Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes. Chromosoma 101, 245–251 (1991).

    Article  CAS  Google Scholar 

  10. Gall, J. G. & Callan, H. G. The sphere organelle contains small nuclear ribonucleoproteins. Proc. Natl Acad. Sci. USA 86, 6635–6639 (1989).

    Article  CAS  Google Scholar 

  11. Wu, Z., Murphy, C., Callan, H. G. & Gall, J. G. Small nuclear ribonucleoproteins and heterogeneous nuclear ribonucleoproteins in the amphibian germinal vesicle: loops, spheres, and snurposomes. J. Cell Biol. 113, 465–483 (1991).

    Article  CAS  Google Scholar 

  12. Wu, C. -H. H. & Gall, J. G. U7 small nuclear RNA in C snurposomes of the Xenopus germinal vesicle. Proc. Natl Acad. Sci. USA 90, 6257–6259 (1993).

    Article  CAS  Google Scholar 

  13. Wu, C. -H. H., Murphy, C. & Gall, J. G. The Sm binding site targets U7 snRNA to coiled bodies (spheres) of amphibian oocytes. RNA 2, 811–823 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frey, M. R. & Matera, A. G. Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc. Natl Acad. Sci. USA 92, 5915–5919 (1995).

    Article  CAS  Google Scholar 

  15. Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 27, 266–288 (1969).

    Article  CAS  Google Scholar 

  16. Hardin, J. H., Spicer, S. S. & Greene, W. B. The paranucleolar structure, accessory body of Cajal, sex chromatin, and related structures in nuclei of rat trigeminal neurons: a cytochemical and ultrastructural study. Anat. Rec. 164, 403–432 (1969).

    Article  CAS  Google Scholar 

  17. Lafarga, M. & Hervas, J. P. in Ramon y Cajal's Contribution to the Neurosciences (eds Grisolia, S., Guerri, C., Samson, F., Norton, S. & Reinoso-Suárez, F.) 91–100 (Elsevier Science Publishers, 1983).

    Google Scholar 

  18. Fakan, S., Leser, G. & Martin, T. E. Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J. Cell Biol. 98, 358–363 (1984).

    Article  CAS  Google Scholar 

  19. Lafontaine, J. G. A light and electron microscope study of small spherical nuclear bodies in meristematic cells of Allium cepa, Vicia faba, and Raphanus sativus. J. Cell Biol. 26, 1–17 (1965).

    Article  CAS  Google Scholar 

  20. Chamberland, H. & Lafontaine, J. G. Localization of snRNP antigens in nucleolus-associated bodies: study of plant interphase nuclei by confocal and electron microscopy. Chromosoma 102, 220–226 (1993).

    Article  Google Scholar 

  21. Ras̆ka, I. et al. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res. 195, 27–37 (1991).

    Article  Google Scholar 

  22. Andrade, L. E. C. et al. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J. Exp. Med. 173, 1407–1419 (1991).

    Article  CAS  Google Scholar 

  23. Beven, A. F., Simpson, G. G., Brown, J. W. S. & Shaw, P. J. The organization of spliceosomal components in the nuclei of higher plants. J. Cell Sci. 108, 509–518 (1995).

    CAS  PubMed  Google Scholar 

  24. Tuma, R. S., Stolk, J. A. & Roth, M. B. Identification and characterization of a sphere organelle protein. J. Cell Biol. 122, 767–773 (1993).

    Article  CAS  Google Scholar 

  25. Wu, Z., Murphy, C. & Gall, J. G. Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle. Mol. Biol. Cell 5, 1119–1127 (1994).

    Article  CAS  Google Scholar 

  26. Gall, J. G., Tsvetkov, A., Wu, Z. & Murphy, C. Is the sphere organelle/coiled body a universal nuclear component? Dev. Genet. 16, 25–35 (1995).

    Article  CAS  Google Scholar 

  27. Bauer, D. W. & Gall, J. G. Coiled bodies without coilin. Mol. Biol. Cell 8, 73–82 (1997).

    Article  CAS  Google Scholar 

  28. Tucker, K. E. et al. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J. Cell Biol. 154, 293–307 (2001).

    Article  CAS  Google Scholar 

  29. Bellini, M. Coilin, more than a molecular marker of the Cajal (coiled) body. Bioessays 22, 861–867 (2000).

    Article  CAS  Google Scholar 

  30. Carmo-Fonseca, M. et al. Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J. 10, 195–206 (1991).

    Article  CAS  Google Scholar 

  31. Carmo-Fonseca, M., Pepperkok, R., Carvalho, M. T. & Lamond, A. I. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J. Cell Biol. 117, 1–14 (1992).

    Article  CAS  Google Scholar 

  32. Huang, S. & Spector, D. L. U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc. Natl Acad. Sci. USA 89, 305–308 (1992).

    Article  CAS  Google Scholar 

  33. Matera, A. G. & Ward, D. C. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J. Cell Biol. 121, 715–727 (1993).

    Article  CAS  Google Scholar 

  34. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).

    Article  CAS  Google Scholar 

  35. Matera, A. G. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309 (1999).

    Article  CAS  Google Scholar 

  36. Gall, J. G. Cajal bodies: the first 100 years. Annu. Rev. Cell Dev. Biol. 16, 273–300 (2000).

    Article  CAS  Google Scholar 

  37. Liu, Q. & Dreyfuss, G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565 (1996).

    Article  CAS  Google Scholar 

  38. Schul, W. et al. The RNA 3′ cleavage factors CstF 64 kDa and CPSF 100 kDa are concentrated in nuclear domains closely associated with coiled bodies and newly synthesized RNA. EMBO J. 15, 2883–2892 (1996).

    Article  CAS  Google Scholar 

  39. Schul, W., van Driel, R. & de Jong, L. Coiled bodies and U2 snRNA genes adjacent to coiled bodies are enriched in factors required for snRNA transcription. Mol. Biol. Cell 9, 1025–1036 (1998).

    Article  CAS  Google Scholar 

  40. Darzacq, X. et al. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21, 2746–2756 (2002).

    Article  CAS  Google Scholar 

  41. Richard, P. et al. A common sequence motif determines the Cajal body-specific localisation of box H/ACA scaRNAs. EMBO J. 22, 4283–4293 (2003).

    Article  CAS  Google Scholar 

  42. Jády, B. E. & Kiss, T. A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20, 541–551 (2001).

    Article  Google Scholar 

  43. Samarsky, D. A., Fournier, M. J., Singer, R. H. & Bertrand, E. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J. 17, 3747–3757 (1998).

    Article  CAS  Google Scholar 

  44. Carvalho, T. et al. The spinal muscular atrophy disease gene product, SMN: a link between snRNP biogenesis and the Cajal (coiled) body. J. Cell Biol. 147, 715–727 (1999).

    Article  CAS  Google Scholar 

  45. Narayanan, A., Speckmann, W., Terns, R. & Terns, M. P. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol. Biol. Cell 10, 2131–2147 (1999).

    Article  CAS  Google Scholar 

  46. Sleeman, J. E. & Lamond, A. I. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr. Biol. 9, 1065–1074 (1999).

    Article  CAS  Google Scholar 

  47. Handwerger, K. E., Murphy, C. & Gall, J. G. Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J. Cell Biol. 160, 495–504 (2003).

    Article  CAS  Google Scholar 

  48. Sleeman, J. E., Trinkle-Mulcahy, L., Prescott, A. R., Ogg, S. C. & Lamond, A. I. Cajal body proteins SMN and coilin show differential dynamic behaviour in vivo. J. Cell Sci. 116, 2039–2050 (2003).

    Article  CAS  Google Scholar 

  49. Boudonck, K., Dolan, L. & Shaw, P. J. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol. Biol. Cell 10, 2297–2307 (1999).

    Article  CAS  Google Scholar 

  50. Platani, M., Goldberg, I., Swedlow, J. R. & Lamond, A. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J. Cell Biol. 151, 1561–1574 (2000).

    Article  CAS  Google Scholar 

  51. Platani, M., Goldberg, I., Lamond, A. I. & Swedlow, J. R. Cajal body dynamics and association with chromatin are ATP-dependent. Nature Cell Biol. 4, 502–508 (2002).

    Article  CAS  Google Scholar 

  52. Verheggen, C. et al. Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J. 21, 2736–2745 (2002).

    Article  CAS  Google Scholar 

  53. Jády, B. E. et al. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 22, 1878–1888 (2003).

    Article  Google Scholar 

  54. Verheggen, C. et al. Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J. 20, 5480–5490 (2001).

    Article  CAS  Google Scholar 

  55. Meister, G. & Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J. 21, 5853–5863 (2002).

    Article  CAS  Google Scholar 

  56. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).

    Article  CAS  Google Scholar 

  57. Hebert, M. D., Szymczyk, P. W., Shpargel, K. B. & Matera, A. G. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev. 15, 2720–2729 (2001).

    Article  CAS  Google Scholar 

  58. Cajal, S. R. y. El núcleo de las células piramidales del cerebro humano y de algunos mamiferos. Trab. Lab. Invest. Biol. Univ. Madrid 8, 27–62 (1910).

    Google Scholar 

  59. Bellini, M. & Gall, J. G. Coilin can form a complex with the U7 small nuclear ribonucleoprotein. Mol. Biol. Cell 9, 2987–3001 (1998).

    Article  CAS  Google Scholar 

  60. Smith, K. P., Carter, K. C., Johnson, C. V. & Lawrence, J. B. U2 and U1 snRNA gene loci associate with coiled bodies. J. Cell. Biochem. 59, 473–485 (1995).

    Article  CAS  Google Scholar 

  61. Zhu, Y., Tomlinson, R. L., Lukowiak, A. A., Terns, R. M. & Terns, M. P. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol. Biol. Cell 3 Oct 2003; [epub ahead of print].

Download references

Acknowledgements

I thank G. Matera for helpful comments. Original studies by J.G.G. that are described here were supported by a grant from the National Institute of General Medical Sciences, USA.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

SMN1

OMIM

Spinal muscular atrophy

Swiss-Prot

fibrillarin

p80-coilin

SMN

FURTHER INFORMATION

Santiago Ramón y Cajal — Nobel lecture

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gall, J. The centennial of the Cajal body. Nat Rev Mol Cell Biol 4, 975–980 (2003). https://doi.org/10.1038/nrm1262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing