Abstract
Exactly 100 years ago, the Spanish neurobiologist Santiago Ramón y Cajal described a new organelle in the nuclei of vertebrate neurons. Now called the Cajal body, this organelle occurs in many cell types in a wide variety of animals and plants. Recent studies indicate that the Cajal body has numerous roles in the assembly and/or modification of the nuclear-transcription and RNA-processing machinery.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Golgi, C. Sur la structure des cellules nerveuses. Arch. Ital. Biol. 30, 60–71 (1898).
Cajal, S. R. y. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab. Lab. Invest. Biol. (Madrid) 2, 129–221 (1903).
Gall, J. G., Bellini, M., Wu, Z. & Murphy, C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol. Biol. Cell 10, 4385–4402 (1999).
Jörgensen, M. & Zellenstudien, I. Morphologische Beiträge zum Problem des Eiwachstums. Arch. Zellforsch. 10, 1–126 (1913).
Bier, K., Kunz, W. & Ribbert, D. Struktur und Funktion der Oocytenchromosomen und Nukleolen sowie der Extra-DNS während der Oogenese panoistischer und meroistischer Insekten. Chromosoma 23, 214–254 (1967).
Gall, J. G. Lampbrush chromosomes from oocyte nuclei of the newt. J. Morphol. 94, 283–352 (1954).
Callan, H. G. Recent work on the structure of cell nuclei. in Fine Structure of Cells: Symposium of the VIIIth Congress in Cell Biology, Leiden 1954, International Union of Biological Sciences Publ., Series B 21, 89–109 (1954).
Gall, J. G., Stephenson, E. C., Erba, H. P., Diaz, M. O. & Barsacchi-Pilone, G. Histone genes are located at the sphere loci of newt lampbrush chromosomes. Chromosoma 84, 159–171 (1981).
Callan, H. G., Gall, J. G. & Murphy, C. Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes. Chromosoma 101, 245–251 (1991).
Gall, J. G. & Callan, H. G. The sphere organelle contains small nuclear ribonucleoproteins. Proc. Natl Acad. Sci. USA 86, 6635–6639 (1989).
Wu, Z., Murphy, C., Callan, H. G. & Gall, J. G. Small nuclear ribonucleoproteins and heterogeneous nuclear ribonucleoproteins in the amphibian germinal vesicle: loops, spheres, and snurposomes. J. Cell Biol. 113, 465–483 (1991).
Wu, C. -H. H. & Gall, J. G. U7 small nuclear RNA in C snurposomes of the Xenopus germinal vesicle. Proc. Natl Acad. Sci. USA 90, 6257–6259 (1993).
Wu, C. -H. H., Murphy, C. & Gall, J. G. The Sm binding site targets U7 snRNA to coiled bodies (spheres) of amphibian oocytes. RNA 2, 811–823 (1996).
Frey, M. R. & Matera, A. G. Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc. Natl Acad. Sci. USA 92, 5915–5919 (1995).
Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 27, 266–288 (1969).
Hardin, J. H., Spicer, S. S. & Greene, W. B. The paranucleolar structure, accessory body of Cajal, sex chromatin, and related structures in nuclei of rat trigeminal neurons: a cytochemical and ultrastructural study. Anat. Rec. 164, 403–432 (1969).
Lafarga, M. & Hervas, J. P. in Ramon y Cajal's Contribution to the Neurosciences (eds Grisolia, S., Guerri, C., Samson, F., Norton, S. & Reinoso-Suárez, F.) 91–100 (Elsevier Science Publishers, 1983).
Fakan, S., Leser, G. & Martin, T. E. Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J. Cell Biol. 98, 358–363 (1984).
Lafontaine, J. G. A light and electron microscope study of small spherical nuclear bodies in meristematic cells of Allium cepa, Vicia faba, and Raphanus sativus. J. Cell Biol. 26, 1–17 (1965).
Chamberland, H. & Lafontaine, J. G. Localization of snRNP antigens in nucleolus-associated bodies: study of plant interphase nuclei by confocal and electron microscopy. Chromosoma 102, 220–226 (1993).
Ras̆ka, I. et al. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res. 195, 27–37 (1991).
Andrade, L. E. C. et al. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J. Exp. Med. 173, 1407–1419 (1991).
Beven, A. F., Simpson, G. G., Brown, J. W. S. & Shaw, P. J. The organization of spliceosomal components in the nuclei of higher plants. J. Cell Sci. 108, 509–518 (1995).
Tuma, R. S., Stolk, J. A. & Roth, M. B. Identification and characterization of a sphere organelle protein. J. Cell Biol. 122, 767–773 (1993).
Wu, Z., Murphy, C. & Gall, J. G. Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle. Mol. Biol. Cell 5, 1119–1127 (1994).
Gall, J. G., Tsvetkov, A., Wu, Z. & Murphy, C. Is the sphere organelle/coiled body a universal nuclear component? Dev. Genet. 16, 25–35 (1995).
Bauer, D. W. & Gall, J. G. Coiled bodies without coilin. Mol. Biol. Cell 8, 73–82 (1997).
Tucker, K. E. et al. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J. Cell Biol. 154, 293–307 (2001).
Bellini, M. Coilin, more than a molecular marker of the Cajal (coiled) body. Bioessays 22, 861–867 (2000).
Carmo-Fonseca, M. et al. Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J. 10, 195–206 (1991).
Carmo-Fonseca, M., Pepperkok, R., Carvalho, M. T. & Lamond, A. I. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J. Cell Biol. 117, 1–14 (1992).
Huang, S. & Spector, D. L. U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc. Natl Acad. Sci. USA 89, 305–308 (1992).
Matera, A. G. & Ward, D. C. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J. Cell Biol. 121, 715–727 (1993).
Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).
Matera, A. G. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309 (1999).
Gall, J. G. Cajal bodies: the first 100 years. Annu. Rev. Cell Dev. Biol. 16, 273–300 (2000).
Liu, Q. & Dreyfuss, G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565 (1996).
Schul, W. et al. The RNA 3′ cleavage factors CstF 64 kDa and CPSF 100 kDa are concentrated in nuclear domains closely associated with coiled bodies and newly synthesized RNA. EMBO J. 15, 2883–2892 (1996).
Schul, W., van Driel, R. & de Jong, L. Coiled bodies and U2 snRNA genes adjacent to coiled bodies are enriched in factors required for snRNA transcription. Mol. Biol. Cell 9, 1025–1036 (1998).
Darzacq, X. et al. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21, 2746–2756 (2002).
Richard, P. et al. A common sequence motif determines the Cajal body-specific localisation of box H/ACA scaRNAs. EMBO J. 22, 4283–4293 (2003).
Jády, B. E. & Kiss, T. A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20, 541–551 (2001).
Samarsky, D. A., Fournier, M. J., Singer, R. H. & Bertrand, E. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J. 17, 3747–3757 (1998).
Carvalho, T. et al. The spinal muscular atrophy disease gene product, SMN: a link between snRNP biogenesis and the Cajal (coiled) body. J. Cell Biol. 147, 715–727 (1999).
Narayanan, A., Speckmann, W., Terns, R. & Terns, M. P. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol. Biol. Cell 10, 2131–2147 (1999).
Sleeman, J. E. & Lamond, A. I. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr. Biol. 9, 1065–1074 (1999).
Handwerger, K. E., Murphy, C. & Gall, J. G. Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J. Cell Biol. 160, 495–504 (2003).
Sleeman, J. E., Trinkle-Mulcahy, L., Prescott, A. R., Ogg, S. C. & Lamond, A. I. Cajal body proteins SMN and coilin show differential dynamic behaviour in vivo. J. Cell Sci. 116, 2039–2050 (2003).
Boudonck, K., Dolan, L. & Shaw, P. J. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol. Biol. Cell 10, 2297–2307 (1999).
Platani, M., Goldberg, I., Swedlow, J. R. & Lamond, A. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J. Cell Biol. 151, 1561–1574 (2000).
Platani, M., Goldberg, I., Lamond, A. I. & Swedlow, J. R. Cajal body dynamics and association with chromatin are ATP-dependent. Nature Cell Biol. 4, 502–508 (2002).
Verheggen, C. et al. Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J. 21, 2736–2745 (2002).
Jády, B. E. et al. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 22, 1878–1888 (2003).
Verheggen, C. et al. Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J. 20, 5480–5490 (2001).
Meister, G. & Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J. 21, 5853–5863 (2002).
Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).
Hebert, M. D., Szymczyk, P. W., Shpargel, K. B. & Matera, A. G. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev. 15, 2720–2729 (2001).
Cajal, S. R. y. El núcleo de las células piramidales del cerebro humano y de algunos mamiferos. Trab. Lab. Invest. Biol. Univ. Madrid 8, 27–62 (1910).
Bellini, M. & Gall, J. G. Coilin can form a complex with the U7 small nuclear ribonucleoprotein. Mol. Biol. Cell 9, 2987–3001 (1998).
Smith, K. P., Carter, K. C., Johnson, C. V. & Lawrence, J. B. U2 and U1 snRNA gene loci associate with coiled bodies. J. Cell. Biochem. 59, 473–485 (1995).
Zhu, Y., Tomlinson, R. L., Lukowiak, A. A., Terns, R. M. & Terns, M. P. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol. Biol. Cell 3 Oct 2003; [epub ahead of print].
Acknowledgements
I thank G. Matera for helpful comments. Original studies by J.G.G. that are described here were supported by a grant from the National Institute of General Medical Sciences, USA.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Related links
DATABASES
LocusLink
OMIM
Swiss-Prot
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Gall, J. The centennial of the Cajal body. Nat Rev Mol Cell Biol 4, 975–980 (2003). https://doi.org/10.1038/nrm1262
Issue Date:
DOI: https://doi.org/10.1038/nrm1262
This article is cited by
-
Transient interactions drive the lateral clustering of cadherin-23 on membrane
Communications Biology (2023)
-
Biomolecular condensates in kidney physiology and disease
Nature Reviews Nephrology (2023)
-
Current research on viral proteins that interact with fibrillarin
Molecular Biology Reports (2023)
-
Direct imaging of intracellular RNA, DNA, and liquid–liquid phase separated membraneless organelles with Raman microspectroscopy
Communications Biology (2022)
-
Regulating FUS Liquid-Liquid Phase Separation via Specific Metal Recognition
Chinese Journal of Polymer Science (2022)