Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Lateral phosphorylation propagation: an aspect of feedback signalling?

Abstract

Local stimulation with epidermal growth factor can induce lateral propagation of epidermal-growth-factor-receptor phosphorylation at the plasma membrane. We discuss mechanisms of phosphorylation propagation and its possible function. Is it the spatial transmission of a local stimulus or is it an aspect of a feedback-signalling-reaction network that generates a switch response to growth-factor stimulation?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spreading of EGFR phosphorylation after local stimulus.
Figure 2: Scenarios for lateral phosphorylation propagation in cells.
Figure 3: Minimal reaction networks regulating receptor phosphorylation.

Similar content being viewed by others

References

  1. Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. H. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).

    Article  CAS  Google Scholar 

  2. Sawano, A., Takayama, S., Matsuda, M. & Miyawaki, A. Lateral propagation of EGF signalling after local stimulation is dependent on receptor density. Dev. Cell 3, 245–257 (2002).

    Article  CAS  Google Scholar 

  3. Hubbard, S. R., Mohammadi, M. & Schlessinger, J. Autoregulatory mechanisms in protein tyrosine kinases. J. Biol. Chem. 273, 11987–11990 (1998).

    Article  CAS  Google Scholar 

  4. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).

    Article  CAS  Google Scholar 

  5. Mahadev, K., Zilbering, A., Zhu, L. & Goldstein, B. J. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938–21942 (2001).

    Article  CAS  Google Scholar 

  6. Bae, Y. S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).

    Article  CAS  Google Scholar 

  7. Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248–253 (1998).

    Article  CAS  Google Scholar 

  8. Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).

    Article  CAS  Google Scholar 

  9. Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 (1998).

    Article  CAS  Google Scholar 

  10. Ostman, A. & Bohmer, D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol. 11, 258–266 (2001).

    Article  CAS  Google Scholar 

  11. Reynolds, A., Tischer, C., Verveer, P. J., Rocks, O. & Bastiaens, P. I. H. Epidermal growth factor receptor activation coupled to inhibition of protein tyrosine phosphatases causes lateral signal propagation. Nature Cell Biol. 5, 447–453 (2003).

    Article  CAS  Google Scholar 

  12. Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Article  CAS  Google Scholar 

  13. Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signalling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, 1005–1028 (2000).

    Article  Google Scholar 

  14. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  15. Bertics, P. J. & Gill, G. N. Self-phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor receptor. J. Biol. Chem. 260, 14642–14647 (1985).

    CAS  Google Scholar 

  16. Hsu, C. Y., Hurwitz, D. R., Mervic, M. & Zilberstein, A. Autophosphorylation of the intracellular domain of the epidermal growth factor receptor results in different effects on its tyrosine kinase activity with various peptide substrates. Phosphorylation of peptides representing Tyr(P) sites of phospholipase C-γ. J. Biol. Chem. 266, 603–608 (1991).

    CAS  Google Scholar 

  17. Gotoh, N., Tojo, A., Hino, M., Yazaki, Y. & Shibuya, M. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem. Biophys. Res. Commun. 186, 768–774 (1992).

    Article  CAS  Google Scholar 

  18. Ferrell, J. E. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  Google Scholar 

  19. Ferrell, J. E. & Xiong, W. Bistability in cell signaling: How to make continuous processes discontinuous and reversible processes irreversible. Chaos 11, 227–236 (2001).

    Article  CAS  Google Scholar 

  20. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggels and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  Google Scholar 

  21. Macinnis, B. L. & Campenot, R. B. Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science 295, 1536–1539 (2002).

    Article  CAS  Google Scholar 

  22. Senger, D. L. & Campenot, R. B. Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell Biol. 138, 411–421 (1997).

    Article  CAS  Google Scholar 

  23. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  24. Einstein, A. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Ann. Phys. 17, 549–560 (1905).

    Article  CAS  Google Scholar 

  25. Murray, J. D. Mathematical Biology (Springer Verlag, Berlin, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Swiss-Prot

EGF

EGFR

H-ras

insulin receptor

TrkA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tischer, C., Bastiaens, P. Lateral phosphorylation propagation: an aspect of feedback signalling?. Nat Rev Mol Cell Biol 4, 971–975 (2003). https://doi.org/10.1038/nrm1258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing