Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Some assembly required: the development of neuronal synapses

Key Points

  • During brain development, central excitatory synapses increase in number and change in morphology.

  • Specific cell-surface molecules are believed to mediate dendrite–axon contact and to have a role in synapse formation and/or maturation.

  • The time course for the molecular assembly of the synapse has been studied in neuronal cultures and occurs rapidly (1 hour).

  • Functional maturation and morphological growth of synapses occurs on both the presynaptic and postsynaptic sides — for example, enhanced neurotransmitter release, the enlargement of dendritic spines and the recruitment of postsynaptic AMPA receptors.

  • Synaptic activity seems not to be required for synapse formation per se.

  • Many questions regarding synapse development remain unanswered, including the underlying signalling pathways, the molecular basis of synapse specificity and the mechanisms of synapse elimination.

Abstract

Neurons in the brain touch and communicate with each other at specialized contacts called synapses. So, how do these tiny intercellular junctions form during development? The assembly of neuronal synapses proceeds through several stages, and occurs with surprising speed. Recent biochemical, genetic and imaging studies are beginning to disclose the molecular mechanisms that underlie synapse formation, growth and maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of a mature excitatory synapse.
Figure 2: Trans-synaptic protein interactions that have been implicated in synaptic contact/adhesion and synapse development.
Figure 3: The sequence of molecular and morphological events in synapse assembly and maturation.

Similar content being viewed by others

References

  1. Sanes, J. R. & Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Rev. Neurosci. 2, 791–805 (2001).

    CAS  Google Scholar 

  2. Shatz, C. J. Emergence of order in visual system development. Proc. Natl Acad. Sci. USA 93, 602–608 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998). Using serial section EM and three-dimensional analysis, this study showed that numerous asymmetric synapses are formed on dendritic filopodia in the developing rat hippocampus, especially during the first postnatal week.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Harris, K. M., Jensen, F. E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Papa, M., Bundman, M. C., Greenberger, V. & Segal, M. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J. Neurosci. 15, 1–11 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyer, C., Schikorski, T. & Stevens, C. F. Comparison of hippocampal dendritic spines in culture and in brain. J. Neurosci. 18, 5294–5300 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci. 2, 880–888 (2001).

    CAS  Google Scholar 

  10. Harris, K. M. & Kater, S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

    CAS  PubMed  Google Scholar 

  11. Miller, M. & Peters, A. Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. J. Comp. Neurol. 203, 555–573 (1981).

    CAS  PubMed  Google Scholar 

  12. Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348 (1999).

    CAS  PubMed  Google Scholar 

  13. Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    CAS  PubMed  Google Scholar 

  15. Saito, Y. et al. Developing corticorubral axons of the cat form synapses on filopodial dendritic protrusions. Neurosci. Lett. 147, 81–84 (1992).

    CAS  PubMed  Google Scholar 

  16. Ahmari, S. E., Buchanan, J. & Smith, S. J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000). Based on time-lapse fluorescence imaging, immunocytochemistry and EM, this study indicates that the presynaptic specialization is rapidly assembled from prefabricated packets, and that these packets contain active-zone proteins and synaptic-vesicle proteins that are associated with vesicular and tubulovesicular membrane structures.

    CAS  PubMed  Google Scholar 

  17. Friedman, H. V., Bresler, T., Garner, C. C. & Ziv, N. E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–69 (2000). The temporal order of presynaptic and postsynaptic protein accumulation after axon–dendrite contact was determined using time-lapse microscopy and retrospective immunohistochemistry. The study indicates that presynaptic differentiation precedes postsynaptic differentiation.

    CAS  PubMed  Google Scholar 

  18. Okabe, S., Miwa, A. & Okado, H. Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J. Neurosci. 21, 6105–6114 (2001). The temporal sequence of the accumulation of presynaptic (synaptophysin) and postsynaptic (PSD-95) proteins at synapses was examined using dual-wavelength time-lapse imaging, and was correlated with dendritic-spine morphogenesis in cultured hippocampal neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169–1180 (2000).

    CAS  PubMed  Google Scholar 

  20. Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89 (2002).

    CAS  PubMed  Google Scholar 

  21. Pinkstaff, J. K., Detterich, J., Lynch, G. & Gall, C. Integrin subunit gene expression is regionally differentiated in adult brain. J. Neurosci. 19, 1541–1556 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aplin, A. E., Howe, A., Alahari, S. K. & Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–263 (1998).

    CAS  PubMed  Google Scholar 

  23. Milner, R. & Campbell, I. L. The integrin family of cell adhesion molecules has multiple functions within the CNS. J. Neurosci. Res. 69, 286–291 (2002).

    CAS  PubMed  Google Scholar 

  24. Pasterkamp, R. J., Peschon, J. J., Spriggs, M. K. & Kolodkin, A. L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424, 398–405 (2003).

    PubMed  Google Scholar 

  25. Hoang, B. & Chiba, A. Genetic analysis on the role of integrin during axon guidance in Drosophila. J. Neurosci. 18, 7847–7855 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411, 317–321 (2001).

    CAS  PubMed  Google Scholar 

  27. Chan, C. S., Weeber, E. J., Kurup, S., Sweatt, J. D. & Davis, R. L. Integrin requirement for hippocampal synaptic plasticity and spatial memory. J. Neurosci. 23, 7107–7116 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Missler, M., Fernandez-Chacon, R. & Sudhof, T. C. The making of neurexins. J. Neurochem. 71, 1339–1347 (1998).

    CAS  PubMed  Google Scholar 

  29. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    CAS  PubMed  Google Scholar 

  30. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997).

    CAS  PubMed  Google Scholar 

  31. Hata, Y., Butz, S. & Sudhof, T. C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Markus, M. et al. α-Neurexins couple Ca2+-channels to synaptic vesicle exocytosis. Nature 424, 939–948 (2003).

    Google Scholar 

  33. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002). A new immunoglobulin-domain-containing protein — SynCAM — is cloned, which is present at synapses and promotes synapse formation in vitro.

    CAS  PubMed  Google Scholar 

  34. Ethell, I. M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001).

    CAS  PubMed  Google Scholar 

  35. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB–EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003). The ephrinB–EphB-receptor trans -synaptic signalling pathway was found to regulate the morphogenesis of dendritic spines through the activation of Rac1 in hippocampal neurons.

    CAS  PubMed  Google Scholar 

  36. Takasu, M. A., Dalva, M. B., Zigmond, R. E. & Greenberg, M. E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

    CAS  PubMed  Google Scholar 

  37. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    CAS  PubMed  Google Scholar 

  38. Henderson, J. T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    CAS  PubMed  Google Scholar 

  39. Grunwald, I. C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    CAS  PubMed  Google Scholar 

  40. Washbourne, P., Bennett, J. E. & McAllister, A. K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nature Neurosci. 5, 751–759 (2002). The movement of NMDA- and AMPA-receptor clusters and their time course of recruitment to nascent synapses was determined using time-lapse imaging of cultured cortical neurons.

    CAS  PubMed  Google Scholar 

  41. Rao, A., Kim, E., Sheng, M. & Craig, A. M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 20, 1260–1271 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhai, R. G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29, 131–143 (2001). This paper identified a dense-core-vesicle population that contains presynaptic active-zone proteins and probably functions as a transport packet for the assembly of the presynaptic active zone.

    CAS  PubMed  Google Scholar 

  45. Shapira, M. et al. Unitary assembly of presynaptic active zones from piccolo-bassoon transport vesicles. Neuron 38, 237–252 (2003).

    CAS  PubMed  Google Scholar 

  46. Zhai, R. et al. Temporal appearance of the presynaptic cytomatrix protein bassoon during synaptogenesis. Mol. Cell. Neurosci. 15, 417–428 (2000).

    CAS  PubMed  Google Scholar 

  47. Marrs, G. S., Green, S. H. & Dailey, M. E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nature Neurosci. 4, 1006–1013 (2001).

    CAS  PubMed  Google Scholar 

  48. El-Husseini, A. E. et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol. 148, 159–172 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bresler, T. et al. The dynamics of SAP90/PSD-95 recruitment to new synaptic junctions. Mol. Cell. Neurosci. 18, 149–167 (2001).

    CAS  PubMed  Google Scholar 

  50. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    CAS  PubMed  Google Scholar 

  51. Passafaro, M., Sala, C., Niethammer, M. & Sheng, M. Microtubule binding by CRIPT and its potential role in the synaptic clustering of PSD-95. Nature Neurosci. 2, 1063–1069 (1999).

    CAS  PubMed  Google Scholar 

  52. Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289 (1998).

    CAS  PubMed  Google Scholar 

  53. Scannevin, R. H. & Huganir, R. L. Postsynaptic organization and regulation of excitatory synapses. Nature Rev. Neurosci. 1, 133–141 (2000).

    CAS  Google Scholar 

  54. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001). This review summarizes the structure and function of PDZ domains and the cell-biological roles of PDZ-domain-containing scaffold proteins.

    CAS  PubMed  Google Scholar 

  55. Sheng, M. & Pak, D. T. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755–778 (2000).

    CAS  PubMed  Google Scholar 

  56. Barry, M. F. & Ziff, E. B. Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol. 12, 279–286 (2002).

    CAS  PubMed  Google Scholar 

  57. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    CAS  PubMed  Google Scholar 

  58. Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12, 697–712 (1983).

    CAS  PubMed  Google Scholar 

  59. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    CAS  PubMed  Google Scholar 

  60. Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 (1997).

    CAS  PubMed  Google Scholar 

  61. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    CAS  PubMed  Google Scholar 

  62. Wu, G., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    CAS  PubMed  Google Scholar 

  63. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    CAS  PubMed  Google Scholar 

  64. Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nature Neurosci. 2, 37–43 (1999).

    CAS  PubMed  Google Scholar 

  65. Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. Postsynaptically silent synapses in single neuron cultures. Neuron 21, 1443–1451 (1998).

    CAS  PubMed  Google Scholar 

  66. Petralia, R. S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nature Neurosci. 2, 31–36 (1999).

    CAS  PubMed  Google Scholar 

  67. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001). Using two-photon excitation of caged-glutamate and electrophysiology studies, the distribution and density of functional AMPA receptors was shown to correlate with the spine-head volume.

    CAS  PubMed  Google Scholar 

  68. Zhu, J. J. & Malinow, R. Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery. Nature Neurosci. 5, 513–514 (2002).

    CAS  PubMed  Google Scholar 

  69. Zhu, J. J., Esteban, J. A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nature Neurosci. 3, 1098–1106 (2000). This study showed that GluR4-containing AMPA receptors are recruited to synapses in response to spontaneous synaptic activity that required the activation of NMDA receptors, but not CaMKII.

    CAS  PubMed  Google Scholar 

  70. Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681 (2003). The extracellular amino-terminal domain of AMPA-receptor-subunit GluR2 is shown to be important for promoting dendritic-spine formation and growth.

    CAS  PubMed  Google Scholar 

  71. Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L. & Huntley, G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259 (2000).

    CAS  PubMed  Google Scholar 

  72. Murase, S., Mosser, E. & Schuman, E. M. Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105 (2002).

    CAS  PubMed  Google Scholar 

  73. Liu, G. Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr. Opin. Neurobiol. 13, 324–331 (2003).

    CAS  PubMed  Google Scholar 

  74. Renger, J. J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001).

    CAS  PubMed  Google Scholar 

  75. Patneau, D. K. & Mayer, M. L. Structure–activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 10, 2385–2399 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, G. Y. & Cline, H. T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226 (1998).

    CAS  PubMed  Google Scholar 

  77. Zou, D. J. & Cline, H. T. Postsynaptic calcium/calmodulin-dependent protein kinase II is required to limit elaboration of presynaptic and postsynaptic neuronal arbors. J. Neurosci. 19, 8909–8918 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002).

    CAS  Google Scholar 

  79. Ganguly, K., Schinder, A. F., Wong, S. T. & Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105, 521–532 (2001).

    CAS  PubMed  Google Scholar 

  80. Rohrbough, J. & Spitzer, N. C. Regulation of intracellular Cl levels by Na(+)-dependent Cl cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J. Neurosci. 16, 82–91 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rivera, C. et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    CAS  PubMed  Google Scholar 

  82. Leinekugel, X., Medina, I., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18, 243–255 (1997).

    CAS  PubMed  Google Scholar 

  83. Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci. 19, 10372–10382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Khazipov, R. et al. Early development of neuronal activity in the primate hippocampus in utero. J. Neurosci. 21, 9770–9781 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002).

    CAS  PubMed  Google Scholar 

  86. Augustin, I., Rosenmund, C., Sudhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    CAS  PubMed  Google Scholar 

  87. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA 99, 9037–9042 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000). In references 87 and 88, morphologically normal synapses are observed in the brains of mice that are deficient for synaptic transmission.

    CAS  PubMed  Google Scholar 

  89. O'Brien, R. et al. Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J. Neurosci. 22, 4487–4498 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23, 309–323 (1999).

    CAS  PubMed  Google Scholar 

  91. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    CAS  PubMed  Google Scholar 

  92. Marques, G. et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002).

    CAS  PubMed  Google Scholar 

  93. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hall, A. C., Lucas, F. R. & Salinas, P. C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000).

    CAS  PubMed  Google Scholar 

  95. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001). This study shows that, in the absence of glia, cultured neurons form sparse and functionally immature synapses. Glia are therefore crucial for synaptogenesis and synapse maturation.

    CAS  PubMed  Google Scholar 

  96. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997).

    CAS  PubMed  Google Scholar 

  97. Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    CAS  PubMed  Google Scholar 

  98. Hering, H., Lin, C. C. & Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 23, 3262–3271 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Beattie, E. C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

FlyBase

Wingless

wishful thinking

Interpro

α-integrin subunit

β-integrin subunit

Swiss-Prot

α-actinin

Bassoon

CaMKII

CASK

αN-catenin

focal adhesion kinase

GluR4

β3-integrin

Munc-13

MuSK

Piccolo

SAP102

Stargazin

synaptophysin

SynCAM

talin

Wnt7a

Glossary

AXON

A thin outgrowth that typically extends a long distance from the neuronal cell body and that conveys electrical impulses to other cells that it contacts.

DENDRITE

A branching extension from the cell body that receives synaptic input from the axon of another neuron.

FILOPODIA

Thin, motile and transient actin-rich protrusions that project from the surface of cells.

GLIAL CELLS

Non-neuronal cells that provide physical and functional support for neurons, in addition to having other crucial functions in the nervous system.

PDZ DOMAIN

('PSD-95, Dlg and ZO-1'-homology domain). A conserved protein-interaction domain that is specialized for binding to specific carboxy-terminal sequences.

POSTSYNAPTIC DENSITY

(PSD). An electron-dense thickening of the postsynaptic membrane that contains a high concentration of neurotransmitter receptors, scaffolding proteins and signalling molecules.

ACTIVE ZONE

The specialized part of the presynaptic membrane, where synaptic vesicles dock and fuse with the plasma membrane and release neurotransmitter.

GABAergic SYNAPSES

Synapses that use GABA (γ-aminobutyric acid) as the neurotransmitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Sheng, M. Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol 4, 833–841 (2003). https://doi.org/10.1038/nrm1242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing