Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Priming virulence factors for delivery into the host

Abstract

Several medically important Gram-negative bacterial pathogens inject virulence factors into host cells through a type III secretion system and specialized bacterial chaperones are required for their effective delivery. Recent structural work shows that these chaperones maintain virulence factors in a partially non-globular conformation that is primed for unfolding and translocation through the 'injectisome'.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The type III secretion system of Gram-negative bacterial pathogens injects virulence factors into host cells.
Figure 2: Crystal structures of type III secretion chaperone–virulence-factor complexes.
Figure 3: A comparison of several type III secretion chaperones from different pathogenic bacteria.

References

  1. Cornelis, G. R. & Van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54, 735–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Galán, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).

    Article  PubMed  Google Scholar 

  3. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Rosqvist, R., Magnusson, K. E. & Wolf-Watz, H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13, 964–972 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wattiau, P., Woestyn, S. & Cornelis, G. R. Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20, 255–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Page, A. L. & Parsot, C. Chaperones of the type III secretion pathway: jacks of all trades. Mol. Microbiol. 46, 1–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Menard, R., Sansonetti, P., Parsot, C. & Vasselon, T. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 4, 515–525 (1994).

    Article  Google Scholar 

  9. Tucker, S. C. & Galán, J. E. Complex function for SicA, a Salmonella enterica serovar typhimurium type III secretion-associated chaperone. J. Bacteriol. 182, 2262–2268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neyt, C. & Cornelis, G. R. Role of SycD, the chaperone of the Yersinia yop translocators YopB and YopD. Mol. Microbiol. 31, 143–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Bergman, T. et al. Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV. J. Bacteriol. 173, 1607–1616 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson, D. M., Ramamurthi, K. S., Tam, C. & Schneewind, O. YopD and LcrH regulate expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA. J. Bacteriol. 184, 1287–1295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Darwin, K. & Miller, V. Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J. 20, 1850–1862 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stebbins, C. E. & Galán, J. E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Luo, Y. et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nature Struct. Biol. 8, 1031–1036 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Birtalan, S. & Ghosh, P. Structure of the Yersinia type III secretory system chaperone SycE. Nature Struct. Biol. 8, 974–978 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Evdokimov, A. G., Tropea, J. E., Routzahn, K. M. & Waugh, D. S. Three-dimensional structure of the type III secretion chaperone SycE from Yersinia pestis. Acta Crystallogr. D 58, 398–406 (2002).

    Article  PubMed  Google Scholar 

  18. Birtalan, S. C., Phillips, R. M. & Ghosh, P. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell. 9, 971–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Zierler, M. K. & Galán, J. E. Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect. Immun. 63, 4024–4028 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bliska, J. B. & Black, D. S. Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect. Immun. 63, 681–685 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Macbeth, K. J. & Lee, C. A. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion. Infect. Immun. 61, 1544–1546 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Blocker, A. et al. Structure and composition of the Shigella flexneri 'needle complex', a part of its type III secreton. Mol. Microbiol. 39, 652–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Cordes, F. S. et al. Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 17103–17107 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Fauman, E. B., Yuvaniyama, C., Schubert, H. L., Stuckey, J. A. & Saper, M. A. The X-ray crystal structures of Yersinia tyrosine phosphatase with bound tungstate and nitrate. Mechanistic implications. J. Biol. Chem. 271, 18780–18788 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Stebbins, C. E. & Galán, J. E. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Evdokimov, A. G., Anderson, D. E., Routzahn, K. M. & Waugh, D. S. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J. Mol. Biol. 312, 807–821 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Samatey, F. A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Eichelberg, K., Ginocchio, C. & Galán, J. E. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176, 4501–4510 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vogler, A. P., Homma, M., Irikura, V. M. & Macnab, R. M. Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of Flil to F0F1, vacuolar, and archaebacterial ATPase subunits. J. Bacteriol. 173, 3564–3572 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wurtele, M., Renault, L., Barbieri, J. T., Wittinghofer, A. & Wolf, E. Structure of the ExoS GTPase activating domain. 491, 26–29 (2001).

  31. Wurtele, M. et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nature Struct. Biol. 8, 23–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, C. L., Khandelwal, P., Keliikuli, K., Zuiderweg, E. R. & Saper, M. A. Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase. Mol. Microbiol. 42, 967–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Sauer, F. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Evdokimov, A. G., Tropea, J. E., Routzahn, K. M., Copeland, T. D. & Waugh, D. S. Structure of the N-terminal domain of Yersinia pestis YopH at 2.0 Å resolution. Acta Crystallogr. D 57, 793–799 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Montagna, L. G., Ivanov, M. I. & Bliska, J. B. Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition. J. Biol. Chem. 276, 5005–5011 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154, 267–273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Driessen, A. J. SecB, a molecular chaperone with two faces. Trends Microbiol. 9, 193–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Driessen, A. J., Manting, E. H. & van der Does, C. The structural basis of protein targeting and translocation in bacteria. Nature Struct. Biol. 8, 492–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Erec Stebbins or Jorge E. Galán.

Related links

Related links

DATABASES

Swiss-Prot

CesT

DnaK

ExoS

GroEL

IpgC

LcrH

Rac1

SicA

SicP

SigE

SptP

SycE

YopE

YopH

YopM

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stebbins, C., Galán, J. Priming virulence factors for delivery into the host. Nat Rev Mol Cell Biol 4, 738–744 (2003). https://doi.org/10.1038/nrm1201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing