Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Looking forward to seeing calcium

Abstract

From molecules, single cells and tissues to whole organisms, our insights into Ca2+ signalling and the corresponding physiological phenomena are growing exponentially. Here, we describe the improvements that have been made in the development of the probes and instrumentation that are used for Ca2+ imaging and the expanding applications of Ca2+ imaging in basic and applied research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Procedure of a typical Ca2+ measurement experiment.
Figure 2: Fluorescence resonance energy transfer.
Figure 3: Examples of Ca2+-concentration signalling in living cells.
Figure 4: Description of major decisions for the planning of a Ca2+-concentration imaging experiment.

Similar content being viewed by others

References

  1. Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74, 595–636 (1994).

    Article  CAS  Google Scholar 

  2. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  3. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  4. Smith, G. A., Hesketh, R. T., Metcalfe, J. C., Feeney, J. & Morris, P. G. Intracellular calcium measurements by 19F NMR of fluorine-labeled chelators. Proc. Natl Acad. Sci. USA 80, 7178–7182 (1983).

    Article  CAS  Google Scholar 

  5. Thomas, M. V. in Techniques in Calcium Research (eds Treherne, J. E. & Rubery, P. H.) (Academic, London, New York, Paris, 1982).

    Google Scholar 

  6. Tsien, R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404 (1980).

    CAS  PubMed  Google Scholar 

  7. Tsien, R. Y., Pozzan, T. & Rink, T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295, 68–71 (1982).

    Article  CAS  Google Scholar 

  8. Tsien, R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527–528 (1981).

    Article  CAS  Google Scholar 

  9. Plinius, G. S. Naturalis Historia Liber IX, §146 (77).

  10. Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962).

    Article  CAS  Google Scholar 

  11. Morise, H., Shimomura, O., Johnson, F. H. & Winant, J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656–2662 (1974).

    Article  CAS  Google Scholar 

  12. Tsuji, F. I., Ohmiya, Y., Fagan, T. F., Toh, H. & Inouye, S. Molecular evolution of the Ca2+-binding photoproteins of the Hydrozoa. Photochem. Photobiol. 62, 657–661 (1995).

    Article  CAS  Google Scholar 

  13. Prasher, D., McCann, R. O. & Cormier, M. J. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem. Biophys. Res. Commun. 126, 1259–1268 (1985).

    Article  CAS  Google Scholar 

  14. Rizzuto, R., Simpson, A. W., Brini, M. & Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–327 (1992); erratum in 360, 768 (1992).

    Article  CAS  Google Scholar 

  15. Minta, A., Kao, J. P. & Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171–8178 (1989).

    CAS  PubMed  Google Scholar 

  16. Rizzuto, R., Brini, M. & Pozzan, T. Targeting recombinant aequorin to specific intracellular organelles. Methods Cell Biol. 40, 339–358 (1994).

    Article  CAS  Google Scholar 

  17. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  Google Scholar 

  18. Marsault, R., Murgia, M., Pozzan, T. & Rizzuto, R. Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J. 16, 1575–1581 (1997).

    Article  CAS  Google Scholar 

  19. Pinton, P., Pozzan, T. & Rizzuto, R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 17, 5298–5308 (1998).

    Article  CAS  Google Scholar 

  20. Rutter, G. A. et al. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc. Natl Acad. Sci. USA 93, 5489–5494 (1996).

    Article  CAS  Google Scholar 

  21. Villalobos, C., Nunez, L., Chamero, P., Alonso, M. T. & Garcia-Sancho, J. Mitochondrial [Ca2+] oscillations driven by local high [Ca2+] domains generated by spontaneous electric activity. J. Biol. Chem. 276, 40293–40297 (2001).

    Article  CAS  Google Scholar 

  22. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  23. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  24. Romoser, V. A., Hinkle, P. M. & Persechini, A. Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J. Biol. Chem. 272, 13270–13274 (1997).

    Article  CAS  Google Scholar 

  25. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  Google Scholar 

  26. Nagai, T., Sawano, A., Park, E. S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl Acad. Sci. USA 98, 3197–3202 (2001).

    Article  CAS  Google Scholar 

  27. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl Acad. Sci. USA 96, 2135–2140 (1999).

    Article  CAS  Google Scholar 

  28. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol. 19, 137–141 (2001).

    Article  CAS  Google Scholar 

  29. Truong, K. et al. FRET-based in vivo Ca2+ imaging by a new calmodulin–GFP fusion molecule. Nature Struct. Biol. 8, 1069–1073 (2001).

    Article  CAS  Google Scholar 

  30. Persechini, A., Lynch, J. A. & Romoser, V. A. Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. Cell Calcium 22, 209–216 (1997).

    Article  CAS  Google Scholar 

  31. Emmanouilidou, E. et al. Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr. Biol. 9, 915–918 (1999).

    Article  CAS  Google Scholar 

  32. Jaconi, M. et al. Inositol 1,4,5-trisphosphate directs Ca2+ flow between mitochondria and the endoplasmic/sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca2+ spiking. Mol. Biol. Cell 11, 1845–1858 (2000).

    Article  CAS  Google Scholar 

  33. Isshiki, M., Ying, Y. S., Fujita, T. & Anderson, R. G. A molecular sensor detects signal transduction from caveolae in living cells. J. Biol. Chem. 277, 43389–43398 (2002).

    Article  CAS  Google Scholar 

  34. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  CAS  Google Scholar 

  35. Yang, F., Moss, L. G. & Phillips, G. N. Jr. The molecular structure of green fluorescent protein. Nature Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  36. Robert, V. et al. Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J. 20, 4998–5007 (2001).

    Article  CAS  Google Scholar 

  37. Murgia, M. et al. Cytosolic free calcium concentration in the mitogenic stimulation of T lymphocytes by anti-CD3 monoclonal antibodies. Cell Calcium 16, 167–180 (1994).

    Article  CAS  Google Scholar 

  38. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).

    Article  CAS  Google Scholar 

  39. Diegelmann, S., Fiala, A., Leibold, C., Spall, T. & Buchner, E. Transgenic flies expressing the fluorescence calcium sensor cameleon 2.1 under UAS control. Genesis 34, 95–98 (2002).

    Article  CAS  Google Scholar 

  40. Fiala, A. et al. Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr. Biol. 12, 1877–1884 (2002).

    Article  CAS  Google Scholar 

  41. Reiff, D. F., Thiel, P. R. & Schuster, C. M. Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions. J. Neurosci. 22, 9399–9409 (2002).

    Article  CAS  Google Scholar 

  42. Yu, D., Baird, G. S., Tsien, R. Y. & Davis, R. L. Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J. Neurosci. 23, 64–72 (2003).

    Article  Google Scholar 

  43. Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. & Piston, D. W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  Google Scholar 

  44. Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The original work by the authors was supported by grants from the Italian Ministry of University, the Italian Research Council (CNR), Italian Telethon, the Italian Association for Cancer Research (AIRC), ASI, Human Science Frontier and from the European Union (EU) to T.P. and R. Rizzuto. R. Rudolf is supported by an EU Marie Curie fellowship. We are grateful to G. Carmignoto and L. Filippin for supplying artwork and to P. Magalhães for help with image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Pozzan.

Related links

Related links

DATABASES

Swiss-Prot

AEQ

CaM

GFP

FURTHER INFORMATION

Tullio Pozzan's laboratory

Venetian Institute of Molecular Medicine

Introduction to Ca2+ measurement with fluorescent indicators

Atsushi Miyawaki's laboratory

Roger Y. Tsien's laboratory

MICROSCOPES AND CAMERAS

Biorad

Leica

Perkin Elmer

Sutter Instruments

T.I.L.L. Photonics

Zeiss

FLUORESCENT PROBES AND FILTERS

Chroma

Molecular Probes

Omega Opticals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolf, R., Mongillo, M., Rizzuto, R. et al. Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4, 579–586 (2003). https://doi.org/10.1038/nrm1153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing