Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ROCKs: multifunctional kinases in cell behaviour

Key Points

  • Rho effectors include two serine/threonine kinases that are known as ROCK I and ROCK II.

  • ROCKs phosphorylate various substrates, including myosin light chain phosphatase, myosin light chain, ezrin–radixin–moesin proteins and LIM (for Lin11, Isl1 and Mec3) kinases, and mediate the formation of actin stress fibres and focal adhesions in various cell types.

  • In smooth muscle, ROCKs are involved in agonist-induced Ca2+-sensitization in muscle contraction, possibly by phosphorylating the myosin-binding subunit of myosin light chain phosphatase, and thereby inhibiting the phosphatase activity.

  • ROCKs have an important role in cell migration by enhancing cell contractility. They are required for tail retraction of monocytes and cancer cells, and a ROCK inhibitor has been used to reduce tumour-cell dissemination in vivo.

  • ROCKs also have a role in other cellular responses that require actomyosin contractility, such as axonal growth and cytokinesis.

  • Recently, ROCKs have been linked to the control of cell size and regulation of distance between the two centrioles.

Abstract

ROCKs, or Rho kinases, are serine/threonine kinases that are involved in many aspects of cell motility, from smooth-muscle contraction to cell migration and neurite outgrowth. Recent experiments have defined new functions of ROCKs in cells, including centrosome positioning and cell-size regulation, which might contribute to various physiological and pathological states.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Phylogenetic tree of kinases that are homologous to ROCKs.
Figure 2: The structure of ROCKs.
Figure 3: Regulation of ROCK function.
Figure 4: ROCK targets.
Figure 5: Signals affecting ROCK-induced myosin II and LIMK activity.
Figure 6: Schematic model of ROCK function in insulin signalling.

References

  1. 1

    Aktories, K., Braun, U., Rosener, S., Just, I. & Hall, A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem. Biophys. Res. Commun. 158, 209–213 (1989).

    CAS  Google Scholar 

  2. 2

    Leung, T., Chen, X. Q., Manser, E. & Lim, L. The p160 RhoA-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16, 5313–5327 (1996). This was the first study to show that ROCK II is a Rho effector that promotes the formation of stress fibres and focal adhesions.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Somlyo, A. P. & Somlyo, A. V. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522, 177–185 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Nakagawa, O. et al. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 392, 189–193 (1996).

    CAS  Google Scholar 

  5. 5

    Ishizaki, T. et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15, 1885–1893 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Leung, T., Manser, E., Tan, L. & Lim, L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051–29054 (1995).

    CAS  Google Scholar 

  7. 7

    Matsui, T. et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15, 2208–2216 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Amano, M. et al. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem. 274, 32418–32424 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Alberts, A. S., Bouquin, N., Johnston, L. H. & Treisman, R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein β subunits and the yeast response regulator protein Skn7. J. Biol. Chem. 273, 8616–8622 (1998).

    CAS  PubMed  Google Scholar 

  10. 10

    Kimura, K. et al. Regulation of the association of adducin with actin filaments by Rho-associated kinase (Rho-kinase) and myosin phosphatase. J. Biol. Chem. 273, 5542–5548 (1998).

    CAS  Google Scholar 

  11. 11

    Sin, W. C., Chen, X. Q., Leung, T. & Lim, L. RhoA-binding kinase α translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol. Cell. Biol. 18, 6325–6239 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Royal, I., Lamarche-Vane, N., Lamorte, L., Kaibuchi, K. & Park, M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell 11, 1709–1725 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Inada, H. et al. Balance between activities of Rho kinase and type 1 protein phosphatase modulates turnover of phosphorylation and dynamics of desmin/vimentin filaments. J. Biol. Chem. 274, 34932–34939 (1999).

    CAS  Google Scholar 

  14. 14

    Chen, X. Q. et al. Characterization of RhoA-binding kinase ROKα implication of the pleckstrin homology domain in ROKα function using region-specific antibodies. J. Biol. Chem. 277, 12680–12688 (2002).

    CAS  Google Scholar 

  15. 15

    Katoh, K. et al. Rho-kinase-mediated contraction of isolated stress fibers. J. Cell Biol. 153, 569–584 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Chevrier, V. et al. The Rho-associated protein kinase p160ROCK is required for centrosome positioning. J. Cell Biol. 157, 807–817 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Amano, M. et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308–1311 (1997).

    CAS  Google Scholar 

  18. 18

    Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997). The authors describe that the target for Y-27632 — an inhibitor that selectively blocks smooth-muscle contraction by inhibiting Ca2+ — sensitization is ROCK, and therefore that it is an important research tool.

    CAS  Google Scholar 

  19. 19

    Fujisawa, K. et al. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J. Biol. Chem. 273, 18943–18949 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Feng, J. et al. Rho-associated kinase of chicken gizzard smooth muscle. J. Biol. Chem. 274, 3744–3752 (1999).

    CAS  Google Scholar 

  21. 21

    Turner, M. S., Fen Fen, L., Trauger, J. W., Stephens, J. & LoGrasso, P. Characterization and purification of truncated human Rho-kinase II expressed in Sf-21 cells. Arch. Biochem. Biophys. 405, 13–20 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Tan, I., Seow, K. T., Lim, L. & Leung, T. Intermolecular and intramolecular interactions regulate catalytic activity of myotonic dystrophy kinase-related Cdc42-binding kinase α. Mol. Cell. Biol. 21, 2767–2778 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Bush, E. W., Helmke, S. M., Birnbaum, R. A. & Perryman, M. B. Myotonic dystrophy protein kinase domains mediate localization, oligomerization, novel catalytic activity, and autoinhibition. Biochemistry 39, 8480–8490 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Ishizaki, T. et al. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 404, 118–124 (1997).

    CAS  Google Scholar 

  25. 25

    Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol. 3, 346–352 (2001).

    CAS  Google Scholar 

  26. 26

    Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol. 3, 339–345 (2001). References 25 and 26 report that ROCK I, but not ROCK II, is cleaved in vivo during apoptosis by caspase-3, generating an active form of the kinase that induces membrane blebbing.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Ward, Y. et al. The GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway. J. Cell Biol. 157, 291–302 (2002). The first study to show that small GTPases (Gem and Rad) can inhibit ROCK function.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Riento, K., Guasch, R. M., Garg, R., Jin, B. & Ridley, A. J. RhoE binds to ROCK I and inhibits downstream signalling. Mol. Cell. Biol. (in the press).

  29. 29

    Bilan, P. J., Moyers, J. S. & Kahn, C. R. The ras-related protein rad associates with the cytoskeleton in a non-lipid-dependent manner. Exp. Cell Res. 242, 391–400 (1998).

    CAS  Google Scholar 

  30. 30

    Piddini, E., Schmid, J. A., de Martin, R. & Dotti, C. G. The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9. EMBO J. 20, 4076–4087 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Sumi, T., Matsumoto, K. & Nakamura, T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem. 276, 670–676 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147, 1023–1038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    CAS  PubMed  Google Scholar 

  34. 34

    Totsukawa, G. et al. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol. 150, 797–806 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Iizuka, K. et al. A major role for the rho-associated coiled coil forming protein kinase in G-protein-mediated Ca2+ sensitization through inhibition of myosin phosphatase in rabbit trachea. Br. J. Pharmacol. 128, 925–933 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Sward, K. et al. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum. J. Physiol. 522, 33–49 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Hartshorne, D. J. Myosin phosphatase: subunits and interactions. Acta. Physiol. Scand. 164, 483–493 (1998).

    CAS  Google Scholar 

  38. 38

    Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996). This paper reports that ROCK II phosphorylates and inactivates the MBS of MLCP, therefore providing a mechanism for ROCK-induced effects on contractility.

    CAS  Google Scholar 

  39. 39

    Velasco, G., Armstrong, C., Morrice, N., Frame, S. & Cohen, P. Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin. FEBS Lett. 527, 101–104 (2002).

    CAS  Google Scholar 

  40. 40

    Feng, J. et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J. Biol. Chem. 274, 37385–37390 (1999).

    CAS  Google Scholar 

  41. 41

    Ohashi, K. et al. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 275, 3577–3582 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999). A further way for ROCKs to regulate actin filaments is presented, as the authors show that ROCK I phosphorylates and activates LIMK2, which, in turn, phosphorylates and inactivates an actin-depolymerizing protein that is known as cofilin.

    CAS  Google Scholar 

  43. 43

    Agnew, B. J., Minamide, L. S. & Bamburg, J. R. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem. 270, 17582–17587 (1995).

    CAS  Google Scholar 

  44. 44

    Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998).

    CAS  Google Scholar 

  45. 45

    Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Sumi, T., Matsumoto, K., Takai, Y. & Nakamura, T. Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J. Cell Biol. 147, 1519–1532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    CAS  Google Scholar 

  48. 48

    Fukata, Y. et al. Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J. Cell Biol. 145, 347–361 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Ling, E., Gardner, K. & Bennett, V. Protein kinase C phosphorylates a recently identified membrane skeleton-associated calmodulin-binding protein in human erythrocytes. J. Biol. Chem. 261, 13875–13878 (1986).

    CAS  Google Scholar 

  50. 50

    Kaiser, H. W., O'Keefe, E. & Bennett, V. Adducin: Ca2+-dependent association with sites of cell–cell contact. J. Cell Biol. 109, 557–569 (1989).

    CAS  Google Scholar 

  51. 51

    Gary, R. & Bretscher, A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061–1075 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998). This study shows that the head-to-tail association of ERM proteins is disrupted by ROCK-mediated phosphorylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Pietromonaco, S. F., Simons, P. C., Altman, A. & Elias, L. Protein kinase C-τ phosphorylation of moesin in the actin-binding sequence. J. Biol. Chem. 273, 7594–7603 (1998).

    CAS  Google Scholar 

  54. 54

    Fukata, Y. et al. Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase and myosin phosphatase. J. Cell Biol. 141, 409–418 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Shaw, R. J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell 9, 403–419 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Jeon, S. et al. RhoA and Rho kinase-dependent phosphorylation of moesin at Thr-558 in hippocampal neuronal cells by glutamate. J. Biol. Chem. 277, 16576–16584 (2002).

    CAS  Google Scholar 

  57. 57

    Matsui, T., Yonemura, S. & Tsukita, S. Activation of ERM proteins in vivo by Rho involves phosphatidylinositol 4-phosphate 5-kinase and not ROCK kinases. Curr. Biol. 9, 1259–1262 (1999).

    CAS  Google Scholar 

  58. 58

    Oude Weernink, P. A. et al. Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase. J. Biol. Chem. 275, 10168–10174 (2000).

    CAS  Google Scholar 

  59. 59

    Tominaga, T. & Barber, D. L. Na–H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol. Biol. Cell 9, 2287–2303 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H. & Barber, D. L. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell 6, 1425–1436 (2000).

    CAS  Google Scholar 

  61. 61

    Denker, S. P. & Barber, D. L. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na–H exchanger NHE1. J. Cell Biol. 159, 1087–1096 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Goto, H. et al. Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J. Biol. Chem. 273, 11728–11736 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Kosako, H. et al. Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase. J. Biol. Chem. 272, 10333–10336 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Hashimoto, R. et al. Domain- and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem. Biophys. Res. Commun. 245, 407–411 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Izawa, T. et al. Elongation factor-1 α is a novel substrate of rho-associated kinase. Biochem. Biophys. Res. Commun. 278, 72–78 (2000).

    CAS  Google Scholar 

  66. 66

    Nagumo, H. et al. Rho-associated kinase phosphorylates MARCKS in human neuronal cells. Biochem. Biophys. Res. Commun. 280, 605–609 (2001).

    CAS  PubMed  Google Scholar 

  67. 67

    Winder, S. J. & Walsh, M. P. Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J. Biol. Chem. 265, 10148–10155 (1990).

    CAS  Google Scholar 

  68. 68

    Kaneko, T. et al. Identification of calponin as a novel substrate of Rho-kinase. Biochem. Biophys. Res. Commun. 273, 110–116 (2000).

    CAS  Google Scholar 

  69. 69

    Arimura, N. et al. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J. Biol. Chem. 275, 23973–23980 (2000).

    CAS  Google Scholar 

  70. 70

    Goshima, Y., Nakamura, F., Strittmatter, P. & Strittmatter, S. M. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509–514 (1995).

    CAS  Google Scholar 

  71. 71

    Inagaki, N. et al. CRMP-2 induces axons in cultured hippocampal neurons. Nature Neurosci. 4, 781–782 (2001).

    CAS  Google Scholar 

  72. 72

    Leung, T. et al. p80 ROKα binding protein is a novel splice variant of CRMP-1 which associates with CRMP-2 and modulates RhoA-induced neuronal morphology. FEBS Lett. 532, 445–449 (2002).

    CAS  Google Scholar 

  73. 73

    Bourguignon, L. Y., Zhu, H., Shao, L., Zhu, D. & Chen, Y. W. Rho-kinase (ROK) promotes CD44v(3,8-10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells. Cell Motil. Cytoskeleton 43, 269–287 (1999).

    CAS  Google Scholar 

  74. 74

    Singleton, P. A. & Bourguignon, L. Y. CD44v10 interaction with Rho-kinase (ROK) activates inositol 1,4,5-triphosphate (IP3) receptor-mediated Ca2+ signaling during hyaluronan (HA)-induced endothelial cell migration. Cell Motil. Cytoskeleton 53, 293–316 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Amano, M. et al. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells 3, 177–188 (1998).

    CAS  Google Scholar 

  76. 76

    Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    CAS  Google Scholar 

  77. 77

    Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999). The authors show that both mDia1 and ROCK I are needed for the formation of actin stress fibres that resemble Rho-induced fibres.

    CAS  Google Scholar 

  78. 78

    Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    CAS  PubMed  Google Scholar 

  79. 79

    Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).

    CAS  Google Scholar 

  80. 80

    Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Wojciak-Stothard, B. & Ridley, A. J. Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol. 77, 1–13 (2003).

    Google Scholar 

  82. 82

    Walsh, S. V. et al. Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia. Gastroenterology 121, 566–579 (2001).

    CAS  Google Scholar 

  83. 83

    Sahai, E. & Marshall, C. J. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biol. 4, 408–415 (2002).

    CAS  Google Scholar 

  84. 84

    Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    CAS  Google Scholar 

  85. 85

    Ridley, A. J. Rho GTPases and cell migration. J. Cell Sci. 114, 2713–2722 (2001).

    CAS  Google Scholar 

  86. 86

    Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001). The authors present evidence that ROCK activity is necessary for RhoA-mediated tail retraction, thereby delineating a role of ROCKs in cell migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Alblas, J., Ulfman, L., Hordijk, P. & Koenderman, L. Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol. Biol. Cell 12, 2137–2145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Somlyo, A. V. et al. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem. Biophys. Res. Commun. 269, 652–659 (2000).

    CAS  Google Scholar 

  89. 89

    Tsuji, T. et al. ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J. Cell Biol. 157, 819–830 (2002). The study shows that in Rho-activated cells ROCKs mediate Rac inhibition, which therefore explains the antagonism that is seen between Rho and Rac in some cell types.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Worthylake, R. A. & Burridge, K. RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278, 13578–13584 (2003).

    CAS  Google Scholar 

  91. 91

    Dawe, H. R., Minamide, L. S., Bamburg, J. R. & Cramer, L. P. ADF/Cofilin controls cell polarity during fibroblast migration. Curr. Biol. 13, 252–257 (2003).

    CAS  Google Scholar 

  92. 92

    Lou, Z., Billadeau, D. D., Savoy, D. N., Schoon, R. A. & Leibson, P. J. A role for a RhoA/ROCK/LIM-kinase pathway in the regulation of cytotoxic lymphocytes. J. Immunol. 167, 5749–5757 (2001).

    CAS  Google Scholar 

  93. 93

    Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105, 81–91 (2001).

    CAS  PubMed  Google Scholar 

  94. 94

    Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    CAS  PubMed  Google Scholar 

  95. 95

    Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    CAS  Google Scholar 

  96. 96

    Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Yoshioka, K., Nakamori, S. & Itoh, K. Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Res. 59, 2004–2010 (1999).

    CAS  Google Scholar 

  98. 98

    Imamura, F., Mukai, M., Ayaki, M. & Akedo, H. Y-27632, an inhibitor of rho-associated protein kinase, suppresses tumor cell invasion via regulation of focal adhesion and focal adhesion kinase. Jpn. J. Cancer Res. 91, 811–816 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Itoh, K. et al. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Med. 5, 221–225 (1999). Importantly, this paper shows that the ROCK inhibitor Y-27632 or a dominant-negative kinase-defective ROCK reduce tumour-cell invasion in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Pawlak, G. & Helfman, D. M. Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Mol. Biol. Cell 13, 336–347 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Izawa, I., Amano, M., Chihara, K., Yamamoto, T. & Kaibuchi, K. Possible involvement of the inactivation of the Rho–Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene 17, 2863–2871 (1998).

    CAS  Google Scholar 

  102. 102

    Sahai, E., Olson, M. F. & Marshall, C. J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 20, 755–766 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Zondag, G. C. et al. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial–mesenchymal transition. J. Cell Biol. 149, 775–782 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Tran Quang, C., Gautreau, A., Arpin, M. & Treisman, R. Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO J. 19, 4565–4576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Sahai, E., Ishizaki, T., Narumiya, S. & Treisman, R. Transformation mediated by RhoA requires activity of ROCK kinases. Curr. Biol. 9, 136–145 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Olazabal, I. et al. Rho-kinase and myosin–II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol. 12, 1413–1418 (2002).

    CAS  Google Scholar 

  108. 108

    Mills, J. C., Stone, N. L., Erhardt, J. & Pittman, R. N. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J. Cell Biol. 140, 627–636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Shiratsuchi, A., Mori, T. & Nakanishi, Y. Independence of plasma membrane blebbing from other biochemical and biological characteristics of apoptotic cells. J. Biochem. 132, 381–386 (2002).

    CAS  Google Scholar 

  110. 110

    Fujita, A., Hattori, Y., Takeuchi, T., Kamata, Y. & Hata, F. NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PC12 cells. Neuroreport 12, 3599–3602 (2001).

    CAS  Google Scholar 

  111. 111

    Katoh, H., Aoki, J., Ichikawa, A. & Negishi, M. p160 RhoA-binding kinase ROKα induces neurite retraction. J. Biol. Chem. 273, 2489–2492 (1998).

    CAS  Google Scholar 

  112. 112

    Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Bito, H. et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26, 431–441 (2000).

    CAS  Google Scholar 

  114. 114

    Wahl, S., Barth, H., Ciossek, T., Aktories, K. & Mueller, B. K. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149, 263–270 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Dontchev, V. D. & Letourneau, P. C. Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J. Neurosci. 22, 6659–6669 (2002).

    CAS  Google Scholar 

  116. 116

    Dergham, P. et al. Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577 (2002). These results show that the ROCK inhibitor Y-27632 stimulates axon regeneration after injury of the spinal cord.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Yamazaki, M. et al. Phosphatidylinositol 4-phosphate 5-kinase is essential for ROCK-mediated neurite remodeling. J. Biol. Chem. 277, 17226–17230 (2002).

    CAS  Google Scholar 

  118. 118

    Birkenfeld, J., Betz, H. & Roth, D. Inhibition of neurite extension by overexpression of individual domains of LIM kinase 1. J. Neurochem. 78, 924–927 (2001).

    CAS  Google Scholar 

  119. 119

    Aizawa, H. et al. Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nature Neurosci. 4, 367–373 (2001).

    CAS  Google Scholar 

  120. 120

    Yamaguchi, Y., Katoh, H., Yasui, H., Mori, K. & Negishi, M. RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J. Biol. Chem. 276, 18977–18983 (2001).

    CAS  Google Scholar 

  121. 121

    Tanaka, H. et al. Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J. Cell Biol. 158, 321–329 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Hall, C. et al. Collapsin response mediator protein switches RhoA and Rac1 morphology in N1E-115 neuroblastoma cells and is regulated by Rho kinase. J. Biol. Chem. 276, 43482–43486 (2001).

    CAS  Google Scholar 

  123. 123

    Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biol. 4, 583–591 (2002).

    CAS  Google Scholar 

  124. 124

    Drechsel, D. N., Hyman, A. A., Hall, A. & Glotzer, M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 7, 12–23 (1997).

    CAS  PubMed  Google Scholar 

  125. 125

    Kosako, H. et al. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19, 6059–6064 (2000).

    CAS  Google Scholar 

  126. 126

    Yasui, Y. et al. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J. Cell Biol. 143, 1249–1258 (1998). These authors present beautiful pictures of mitotic cells in which the segregation of glial filaments is impaired when cells express a GFAP construct that has mutations at the ROCK phosphorylation sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Piekny, A. J. & Mains, P. E. Rho-binding kinase (LET-502) and myosin phosphatase (MEL-11) regulate cytokinesis in the early Caenorhabditis elegans embryo. J. Cell Sci. 115, 2271–2282 (2002).

    CAS  PubMed  Google Scholar 

  128. 128

    Madaule, P. et al. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394, 491–494 (1998).

    CAS  Google Scholar 

  129. 129

    Coelho, C. M. & Leevers, S. J. Do growth and cell division rates determine cell size in multicellular organisms? J. Cell Sci. 113, 2927–2934 (2000).

    CAS  Google Scholar 

  130. 130

    Sordella, R. et al. Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development. Dev. Cell 2, 553–565 (2002). This interesting study shows that inhibition of ROCK function increases the reduced size of cells from p190-B RhoGAP-deficient mice.

    CAS  Google Scholar 

  131. 131

    Farah, S., Agazie, Y., Ohan, N., Ngsee, J. K. & Liu, X. J. A rho-associated protein kinase, ROKα, binds insulin receptor substrate-1 and modulates insulin signaling. J. Biol. Chem. 273, 4740–4746 (1998).

    CAS  Google Scholar 

  132. 132

    Ohan, N. et al. RHO-associated protein kinase α potentiates insulin-induced MAP kinase activation in Xenopus oocytes. J. Cell Sci. 112, 2177–2184 (1999).

    CAS  Google Scholar 

  133. 133

    Sordella, R., Jiang, W., Chen, G. -C., Curto, M. & Settleman, J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113, 147–158 (2003).

    CAS  Google Scholar 

  134. 134

    Jaffer, Z. M. & Chernoff, J. p21-activated kinases: three more join the Pak. Int. J. Biochem. Cell Biol. 34, 713–717 (2002).

    CAS  Google Scholar 

  135. 135

    Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Muranyi, A. et al. Myotonic dystrophy protein kinase phosphorylates the myosin phosphatase targeting subunit and inhibits myosin phosphatase activity. FEBS Lett. 493, 80–84 (2001).

    CAS  Google Scholar 

  137. 137

    Ikenoya, M. et al. Inhibition of rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor. J. Neurochem. 81, 9–16 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Ishizaki, T. et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57, 976–983 (2000).

    CAS  Google Scholar 

  139. 139

    Byers, H. R., White, G. E. & Fujiwara, K. Organization and function of stress fibers in cells in vitro and in situ. A review. Cell Muscle Motil. 5, 83–137 (1984).

    CAS  Google Scholar 

  140. 140

    Koyama, M. et al. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 475, 197–200 (2000).

    CAS  Google Scholar 

  141. 141

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Leung, T., Chen, X. Q., Tan, I., Manser, E. & Lim, L. Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol. Cell. Biol. 18, 130–140 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Fujisawa, K., Fujita, A., Ishizaki, T., Saito, Y. & Narumiya, S. Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. J. Biol. Chem. 271, 23022–23028 (1996).

    CAS  Google Scholar 

  144. 144

    Sanders, L. C., Matsumura, F., Bokoch, G. M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).

    CAS  Google Scholar 

  145. 145

    van Leeuwen, F. N., van Delft, S., Kain, H. E., van der Kammen, R. A. & Collard, J. G. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nature Cell Biol. 1, 242–248 (1999).

    CAS  PubMed  Google Scholar 

  146. 146

    Begum, N., Sandu, O. A., Ito, M., Lohmann, S. M. & Smolenski, A. Active Rho kinase (ROK-α) associates with insulin receptor substrate–1 and inhibits insulin signaling in vascular smooth muscle cells. J. Biol. Chem. 277, 6214–6222 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

K.R. is supported by a European Commission Marie Curie fellowship.

Author information

Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Adducin

cofilin

CR3

Dia

eukaryotic elongation factor 1α

IGF-1

MBS

PP1c

profilin

Swiss-Prot

basic calponin

CD44

Cdc42

citron kinase

CRMP1

CRMP2

DMPK

E-cadherin

Gem

GFAP

Insulin receptor substrate-1

LIMK1

LIMK2

MARCKS

MLCK

MRCK

NF-L

NHE1

p190-B

RhoA

RhoB

RhoC

RhoE

ROCK I

ROCK II

vimentin

FURTHER INFORMATION

Anne J. Ridley's laboratory

Cell migration consortium

Movies from the cell migration consortium

Cytokinesis link with movies

Glossary

STRESS FIBRE

An axial bundle of F-actin and myosin that traverses the cytoplasm. The formation of stress fibres is typically induced by the activity of the GTPase RhoA.

FOCAL ADHESION

A cellular structure that links the extracellular matrix on the outside of the cell, through integrin receptors, to the actin cytoskeleton inside the cell.

PLECKSTRIN HOMOLOGY (PH) DOMAIN

A sequence of around 100 amino acids that is present in many signalling molecules, and in some cases binds to phosphatidylinositides. Pleckstrin is a protein of unknown function that was originally identified in platelets — it is a principal substrate of protein kinase C.

CLEAVAGE FURROW

A region of the plasma membrane in higher eukaryotic cells that ingresses to separate the two daughter cells at cytokinesis. Contraction in this region is driven by the interaction of actin and myosin filaments.

INTERMEDIATE FILAMENT

A cytoskeletal filament, typically 10 nm in diameter, that occurs in higher eukaryotic cells. The protein composition of intermediate filaments varies between cell types. Examples of intermediate-filament proteins are keratins, vimentin and desmin.

DOMINANT-NEGATIVE

A defective protein that retains some interaction abilities and so competes with normal proteins for interacting partners and/or substrates.

CASPASE

A cysteine endopeptidase that cleaves at specific aspartic acid residues. Caspases are typically activated during apoptosis.

GTPγS

A non-hydrolysable analogue of GTP.

PHORBOL ESTER

A polycyclic compound isolated from croton oil that is a potent co-carcinogen or tumour promoter. Phorbol esters are diacylglycerol analogues and irreversibly activate protein kinase C.

MICROVILLI

Small, finger-like projections (1–2 μm long and 100 nm wide) that occur on the exposed surfaces of epithelial cells to maximize the surface area.

LYSOPHOSPHATIDIC ACID

(LPA). Any phosphatidic acid that is deacylated at positions 1 or 2. LPA binds to a G-protein-coupled receptor, which results in the activation of the GTPase Rho and the induction of stress fibres.

GROWTH CONE

The motile tip of an axon or dendrite of a growing nerve cell, which spreads out into a large cone-shaped appendage.

CA2+ SENSITIZATION

Stimulation by an agonist results in increased myosin light chain phosphorylation and smooth-muscle-cell contraction at submaximal Ca2+ levels.

TIGHT JUNCTION

A belt-like region of adhesion between adjacent epithelial or endothelial cells. Tight junctions regulate paracellular flux, and contribute to the maintenance of cell polarity by stopping molecules from diffusing within the plane of the membrane.

ADHERENS JUNCTION

A cell–cell adhesion complex that is composed of cadherins and catenins that are attached to cytoplasmic actin filaments.

MACROPHAGE

Any cell of the mononuclear phagocyte system that is characterized by its ability to phagocytose foreign particulate and colloidal material.

ASTROCYTE

A star-shaped glial cell that carries out supportive and protective functions for the tissue of the central nervous system.

LAMELLIPODIUM

A thin sheet-like cell extension that is found at the leading edge of crawling cells or growth cones.

MONOCYTE

A large leukocyte with a horseshoe-shaped nucleus. Monocytes derive from pluripotent stem cells and become phagocytic macrophages when they enter tissues.

NATURAL KILLER CELLS

A class of lymphocytes that are crucial in the innate immune response. They exert a cytotoxic activity on target cells (such as virus-infected cells) that is enhanced by cytokines such as interferons.

BLEBBING

Protrusions from the plasma membrane that rapidly extend and retract in many regions, and can be shed as small vesicles containing cytoplasmic material. Blebbing is most commonly observed soon after the onset of apoptosis, and is believed to be driven by a strong contractile force that is generated by actin and myosin.

PC12 CELLS

A clonal line of rat adrenal pheochromocytoma cells that respond to nerve growth factor by extension of neurites and that can synthesize, store and secrete catecholamines, much like sympathetic neurons. PC12 cells contain small, clear synaptic-like vesicles and larger dense core granules.

RNA INTERFERENCE

The process by which an introduced double-stranded RNA specifically silences the expression of genes through degradation of their cognate messenger RNAs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riento, K., Ridley, A. ROCKs: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4, 446–456 (2003). https://doi.org/10.1038/nrm1128

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing