Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens

Key Points

  • A key strategy for pathogens to survive in a hostile host environment is to interfere with normal cell signalling to defuse the defences that are aimed at controlling and eliminating foreign invaders.

  • Macrophages are the immune system's journeymen that are well situated to recognize rapidly, internalize and degrade bacterial pathogens, and to contain an infection for long enough to initiate adaptive immunity. Macrophages function as both sentinels and the first line of defence against infection, and they are therefore an essential barrier that pathogens must overcome to be successful.

  • Many successful bacterial pathogens are able to alter their recognition, either by modifying their surface, interrupting the signalling that is triggered by receptor–ligand binding, or by engaging alternative receptors, ultimately escaping macrophage surveillance.

  • Different bacterial pathogens avoid uptake by, or trafficking within, macrophages to minimize damage from the cell's antimicrobial arsenal.

  • Microbial recognition initiates robust signalling by the extracellular signal-regulated kinase/mitogen-activated protein kinase, nuclear factor κB, and interferon-γ pathways, which are crucial for many responses to infection. They present a strategic target for bacterial subversion, which involves producing bacterial proteins that mimic, inhibit, or perturb the localization of eukaryotic signalling molecules.

  • Some pathogens capitalize on the destructive consequences of an over-exuberant inflammatory response on the host. Other pathogens persist by avoiding or attenuating the inflammatory response that is orchestrated by macrophages.

  • By altering macrophage signalling, pathogens can alter the production of, or response to, cytokines, which impairs the communication between cells that is necessary for clearance of the infection.

  • Disease can result from dysregulated macrophage signalling that is driven by the host or pathogen and does not necessarily benefit either player. It is therefore important to consider the net balance of signalling within a macrophage when determining if response to infection favours host or pathogen survival.

Abstract

Macrophages function at the front line of immune defences against incoming pathogens. But the ability of macrophages to internalize bacteria, migrate, recruit other immune cells to the site of infection and influence the nature of the immune response can provide unintended benefits for bacterial pathogens that are able to subvert or co-opt these normally effective defences. This review highlights recent advances in our understanding of the many interference strategies that are used by bacterial pathogens to undermine macrophage signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial pathogens subvert macrophage signalling and effector mechanisms.
Figure 2: Bacterial pathogens can benefit from targeting macrophages.
Figure 3: Macrophage surveillance systems to detect bacteria.
Figure 4: Pathogen avoidance of phagolysosomal degradation.
Figure 5: Disruption of NF-κB signalling by bacterial pathogens.
Figure 6: Disruption of MAPK signalling.

Similar content being viewed by others

References

  1. Knodler, L. A., Celli, J. & Finlay, B. B. Pathogenic trickery: deception of host cell processes. Nature Rev. Mol. Cell Biol. 2, 578–588 (2001).

    CAS  Google Scholar 

  2. Hornef, M. W., Wick, M. J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunol. 3, 1033–1040 (2002).

    CAS  Google Scholar 

  3. Hume, D. A. et al. The mononuclear phagocyte system revisited. J. Leukoc. Biol. 72, 621–627 (2002).

    CAS  PubMed  Google Scholar 

  4. Gregory, S. H. & Wing, E. J. Neutrophil–Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J. Leukoc. Biol. 72, 239–248 (2002).

    CAS  PubMed  Google Scholar 

  5. Palucka, K. & Banchereau, J. How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr. Opin. Immunol. 14, 420–431 (2002).

    CAS  PubMed  Google Scholar 

  6. Ruckdeschel, K. et al. Yersinia enterocolitica impairs activation of transcription factor NF-κB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor-α production. J. Exp. Med. 187, 1069–1079 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Galan, J. E. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17, 53–86 (2001).

    CAS  PubMed  Google Scholar 

  8. Barton, G. M. & Medzhitov, R. Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol. 270, 81–92 (2002).

    CAS  PubMed  Google Scholar 

  9. Underhill, D. M. & Ozinsky, A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–110 (2002).

    CAS  PubMed  Google Scholar 

  10. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  12. Rosenberger, C. M., Scott, M. G., Gold, M. R., Hancock, R. E. & Finlay, B. B. Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J. Immunol. 164, 5894–904 (2000).

    CAS  PubMed  Google Scholar 

  13. Nau, G. J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. USA 99, 1503–1508 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Boldrick, J. C. et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc. Natl Acad. Sci. USA 99, 972–977 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sweet, M. J. et al. Colony-stimulating factor-1 suppresses responses to CpG DNA and expression of toll-like receptor 9 but enhances responses to lipopolysaccharide in murine macrophages. J. Immunol. 168, 392–399 (2002).

    CAS  PubMed  Google Scholar 

  16. Fitzgerald, K. A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    CAS  PubMed  Google Scholar 

  17. Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunol. 2, 835–841 (2001).

    CAS  Google Scholar 

  18. O'Neill, L. A. Toll-like receptor signal transduction and the tailoring of innate immunity: a role for Mal? Trends Immunol. 23, 383–384 (2002).

    PubMed  Google Scholar 

  19. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    CAS  PubMed  Google Scholar 

  20. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999). This paper is the first report to show that TLRs can traffic to phagosomes.

    CAS  PubMed  Google Scholar 

  21. Ernst, R. K., Guina, T. & Miller, S. I. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect. 3, 1327–1334 (2001).

    CAS  PubMed  Google Scholar 

  22. Hajjar, A. M., Ernst, R. K., Tsai, J. H., Wilson, C. B. & Miller, S. I. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nature Immunol. 3, 354–359 (2002).

    CAS  Google Scholar 

  23. Sing, A. et al. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J. Exp. Med. 196, 1017–1024 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sing, A., Roggenkamp, A., Geiger, A. M. & Heesemann, J. Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J. Immunol. 168, 1315–1321 (2002).

    CAS  PubMed  Google Scholar 

  25. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003). References 23–25 describe new mechanisms for the subversion of TLR-mediated signalling by bacterial components.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dramsi, S. & Cossart, P. Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. J. Cell Biol. 156, 943–946 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. O'Riordan, M., Yi, C. H., Gonzales, R., Lee, K. D. & Portnoy, D. A. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl Acad. Sci. USA 99, 13861–13866 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    CAS  PubMed  Google Scholar 

  29. Girardin, S. E. et al. CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736–742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Underhill, D. M. & Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852 (2002).

    CAS  PubMed  Google Scholar 

  31. Garcia-Garcia, E. & Rosales, C. Signal transduction during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 72, 1092–1108 (2002).

    CAS  PubMed  Google Scholar 

  32. Sansonetti, P. Phagocytosis of bacterial pathogens: implications in the host response. Semin. Immunol. 13, 381–390 (2001).

    CAS  PubMed  Google Scholar 

  33. Celli, J. & Finlay, B. B. Bacterial avoidance of phagocytosis. Trends Microbiol. 10, 232–237 (2002).

    CAS  PubMed  Google Scholar 

  34. Ernst, J. D. Bacterial inhibition of phagocytosis. Cell Microbiol. 2, 379–386 (2000).

    CAS  PubMed  Google Scholar 

  35. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    CAS  PubMed  Google Scholar 

  36. Shao, F. et al. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc. Natl Acad. Sci. USA 100, 904–909 (2003). Together with reference 35, these authors identify the activity and substrate specificity of Yersinia 's YopT protease.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cornelis, G. R. The Yersinia Ysc–Yop 'type III' weaponry. Nature Rev. Mol. Cell Biol. 3, 742–752 (2002).

    CAS  Google Scholar 

  38. Celli, J., Olivier, M. & Finlay, B. B. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20, 1245–1258 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wurzner, R. Evasion of pathogens by avoiding recognition or eradication by complement, in part via molecular mimicry. Mol. Immunol. 36, 249–260 (1999).

    CAS  PubMed  Google Scholar 

  40. Simons, K. & Ehehalt, R. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Duncan, M. J., Shin, J. S. & Abraham, S. N. Microbial entry through caveolae: variations on a theme. Cell. Microbiol. 4, 783–791 (2002).

    CAS  PubMed  Google Scholar 

  42. Rosenberger, C. M., Brumell, J. H. & Finlay, B. B. Microbial pathogenesis: lipid rafts as pathogen portals. Curr. Biol. 10, R823–R825 (2000).

    CAS  PubMed  Google Scholar 

  43. Baorto, D. M. et al. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389, 636–639 (1997).

    CAS  PubMed  Google Scholar 

  44. Hellwig, S. M. et al. Targeting to Fcγ receptors, but not CR3 (CD11b/CD18), increases clearance of Bordetella pertussis. J. Infect. Dis. 183, 871–879 (2001).

    CAS  PubMed  Google Scholar 

  45. Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998).

    CAS  PubMed  Google Scholar 

  46. Amer, A. O. & Swanson, M. S. A phagosome of one's own: a microbial guide to life in the macrophage. Curr. Opin. Microbiol. 5, 56–61 (2002).

    CAS  PubMed  Google Scholar 

  47. Roy, C. R. Exploitation of the endoplasmic reticulum by bacterial pathogens. Trends Microbiol. 10, 418–424 (2002).

    CAS  PubMed  Google Scholar 

  48. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–E188 (1999).

    CAS  PubMed  Google Scholar 

  49. Swanson, M. S. & Fernandez-Moreia, E. A microbial strategy to multiply in macrophages: the pregnant pause. Traffic 3, 170–177 (2002).

    CAS  PubMed  Google Scholar 

  50. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).

    CAS  PubMed  Google Scholar 

  51. Kagan, J. C. & Roy, C. R. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nature Cell Biol. 4, 945–954 (2002). References 50 and 51 characterize how phagolysosomal trafficking is altered by Legionella virulence proteins and results in a unique intracellular compartment that allows bacterial replication.

    CAS  PubMed  Google Scholar 

  52. Ruiz-Albert, J. et al. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol. 44, 645–661 (2002).

    CAS  PubMed  Google Scholar 

  53. Ferrari, G., Langen, H., Naito, M. & Pieters, J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97, 435–447 (1999).

    CAS  PubMed  Google Scholar 

  54. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).

    CAS  PubMed  Google Scholar 

  55. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    CAS  Google Scholar 

  56. Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S. & Deretic, V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154, 631–644 (2001). The authors identify the discrete stage of phagolysosomal trafficking interfered with by the M. tuberculosis glycolipid ManLAM.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vazquez-Torres, A. et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658 (2000).

    CAS  PubMed  Google Scholar 

  58. Gallois, A., Klein, J. R., Allen, L. A., Jones, B. D. & Nauseef, W. M. Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J. Immunol. 166, 5741–5748 (2001).

    CAS  PubMed  Google Scholar 

  59. Chakravortty, D., Hansen-Wester, I. & Hensel, M. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195, 1155–1166 (2002). References 57–59 identify a novel virulence-factor-dependent mechanism for Salmonella survival within macrophages: diversion of the enzymes responsible for the oxidative and nitrosative bursts.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ehrt, S. et al. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140 (2001). The authors use gene array profiling to determine the contributions of IFN-γ and reactive oxygen and nitrogen species in shaping macrophage responses to M. tuberculosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gobert, A. P. et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl Acad. Sci. USA 98, 13844–13849 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schesser, K. et al. The yopJ locus is required for Yersinia-mediated inhibition of NF-κB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28, 1067–1079 (1998).

    CAS  PubMed  Google Scholar 

  63. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000). Together with reference 72, these authors identify and characterize the mechanism of action of the Yersinia virulence protein responsible for impaired MAPK signalling.

    CAS  PubMed  Google Scholar 

  64. Pahlevan, A. A. et al. The inhibitory action of Mycobacterium ulcerans soluble factor on monocyte/T cell cytokine production and NF-κB function. J. Immunol. 163, 3928–3935 (1999).

    CAS  PubMed  Google Scholar 

  65. Kayal, S. et al. Listeriolysin O secreted by Listeria monocytogenes induces NF-κB signalling by activating the IκB kinase complex. Mol. Microbiol. 44, 1407–1419 (2002).

    CAS  PubMed  Google Scholar 

  66. Mansell, A., Braun, L., Cossart, P. & O'Neill, L. A. A novel function of InIB from Listeria monocytogenes: activation of NF-κB in J774 macrophages. Cell. Microbiol. 2, 127–136 (2000).

    CAS  PubMed  Google Scholar 

  67. Rao, K. M. MAP kinase activation in macrophages. J. Leukoc. Biol. 69, 3–10 (2001).

    CAS  PubMed  Google Scholar 

  68. Valledor, A. F., Comalada, M., Xaus, J. & Celada, A. The differential time-course of extracellular-regulated kinase activity correlates with the macrophage response toward proliferation or activation. J. Biol. Chem. 275, 7403–7409 (2000).

    CAS  PubMed  Google Scholar 

  69. Rosenberger, C. M. & Finlay, B. B. Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J. Biol. Chem. 277, 18753–18762 (2002).

    CAS  PubMed  Google Scholar 

  70. Abrami, L., Liu, S., Cosson, P., Leppla, S. H. & van der Goot, F. G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328 (2003). This reference characterizes the lipid-raft-dependent mechanism for anthrax toxin entry into cells

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, J. M., Greten, F. R., Li, Z. W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048–2051 (2002). Reference 71 describes how one of the anthrax toxin subunits, lethal factor, undermines macrophage signalling by cleaving a MAPK kinase.

    CAS  PubMed  Google Scholar 

  72. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923 (1999).

    CAS  PubMed  Google Scholar 

  73. Darnell, J. E. Jr., Kerr, I. M. & Stark, G. R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    CAS  PubMed  Google Scholar 

  74. Decker, T., Stockinger, S., Karaghiosoff, M., Muller, M. & Kovarik, P. IFNs and STATs in innate immunity to microorganisms. J. Clin. Invest. 109, 1271–1277 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997).

    CAS  PubMed  Google Scholar 

  76. Shtrichman, R. & Samuel, C. E. The role of γ-interferon in antimicrobial immunity. Curr. Opin. Microbiol. 4, 251–259 (2001).

    CAS  PubMed  Google Scholar 

  77. Tsang, A. W., Oestergaard, K., Myers, J. T. & Swanson, J. A. Altered membrane trafficking in activated bone marrow-derived macrophages. J. Leukoc. Biol. 68, 487–494 (2000).

    CAS  PubMed  Google Scholar 

  78. Adams, D. O. & Hamilton, T. A. The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283–318 (1984).

    CAS  PubMed  Google Scholar 

  79. Flynn, J. L. et al. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    CAS  PubMed  Google Scholar 

  80. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    CAS  PubMed  Google Scholar 

  81. Hussain, S., Zwilling, B. S. & Lafuse, W. P. Mycobacterium avium infection of mouse macrophages inhibits IFN-γ Janus kinase–STAT signaling and gene induction by down-regulation of the IFN-γ receptor. J. Immunol. 163, 2041–2048 (1999).

    CAS  PubMed  Google Scholar 

  82. Ting, L. M., Kim, A. C., Cattamanchi, A. & Ernst, J. D. Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163, 3898–3906 (1999).

    CAS  PubMed  Google Scholar 

  83. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    CAS  PubMed  Google Scholar 

  84. Wilson, M., Seymour, R. & Henderson, B. Bacterial perturbation of cytokine networks. Infect. Immun. 66, 2401–2409 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Monack, D. M. et al. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J. Exp. Med. 192, 249–258 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sansonetti, P. J. et al. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12, 581–590 (2000).

    CAS  PubMed  Google Scholar 

  88. Weinrauch, Y. & Zychlinsky, A. The induction of apoptosis by bacterial pathogens. Annu. Rev. Microbiol. 53, 155–187 (1999).

    CAS  PubMed  Google Scholar 

  89. Mosser, D. M. & Karp, C. L. Receptor mediated subversion of macrophage cytokine production by intracellular pathogens. Curr. Opin. Immunol. 11, 406–411 (1999).

    CAS  PubMed  Google Scholar 

  90. Redpath, S., Ghazal, P. & Gascoigne, N. R. Hijacking and exploitation of IL-10 by intracellular pathogens. Trends Microbiol. 9, 86–92 (2001).

    CAS  PubMed  Google Scholar 

  91. Yrlid, U. & Wick, M. J. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J. Exp. Med. 191, 613–624 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Boise, L. H. & Collins, C. M. Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol. 9, 64–67 (2001).

    CAS  PubMed  Google Scholar 

  93. Maksymowych, W. P. & Kane, K. P. Bacterial modulation of antigen processing and presentation. Microbes Infect. 2, 199–211 (2000).

    CAS  PubMed  Google Scholar 

  94. Hmama, Z., Gabathuler, R., Jefferies, W. A., de Jong, G. & Reiner, N. E. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J. Immunol. 161, 4882–4893 (1998).

    CAS  PubMed  Google Scholar 

  95. Giacomini, E. et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J. Immunol. 166, 7033–7041 (2001).

    CAS  PubMed  Google Scholar 

  96. VanHeyningen, T. K., Collins, H. L. & Russell, D. G. IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses. J. Immunol. 158, 330–337 (1997).

    CAS  PubMed  Google Scholar 

  97. Ullrich, H. J., Beatty, W. L. & Russell, D. G. Interaction of Mycobacterium avium-containing phagosomes with the antigen presentation pathway. J. Immunol. 165, 6073–6080 (2000).

    CAS  PubMed  Google Scholar 

  98. Ramachandra, L., Noss, E., Boom, W. H. & Harding, C. V. Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide–major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J. Exp. Med. 194, 1421–1432 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Forestier, C., Deleuil, F., Lapaque, N., Moreno, E. & Gorvel, J. P. Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. J. Immunol. 165, 5202–5210 (2000).

    CAS  PubMed  Google Scholar 

  100. Zhong, G., Fan, T. & Liu, L. Chlamydia inhibits interferon-γ-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J. Exp. Med. 189, 1931–1938 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhong, G., Liu, L., Fan, T., Fan, P. & Ji, H. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon-γ-inducible major histocompatibility complex class I expression in Chlamydia-infected cells. J. Exp. Med. 191, 1525–1534 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jendro, M. C. et al. Infection of human monocyte-derived macrophages with Chlamydia trachomatis induces apoptosis of T cells: a potential mechanism for persistent infection. Infect. Immun. 68, 6704–6711 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

    CAS  Google Scholar 

  104. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003). Describes a mechanism for the ability of innate recognition of bacterial products to influence adaptive immunity.

    CAS  PubMed  Google Scholar 

  105. Fleming, S. D. & Campbell, P. A. Some macrophages kill Listeria monocytogenes while others do not. Immunol. Rev. 158, 69–77 (1997).

    CAS  PubMed  Google Scholar 

  106. Ravasi, T. et al. Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J. Immunol. 168, 44–50 (2002).

    CAS  PubMed  Google Scholar 

  107. Wijburg, O. L., Simmons, C. P., van Rooijen, N. & Strugnell, R. A. Dual role for macrophages in vivo in pathogenesis and control of murine Salmonella enterica var. Typhimurium infections. Eur. J. Immunol. 30, 944–953 (2000).

    CAS  PubMed  Google Scholar 

  108. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    CAS  PubMed  Google Scholar 

  109. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Fernandez, B. Vallance, S. Gruenheid, N. Brown and M. Zaharik for their helpful suggestions and discussions. Work in our laboratory is supported by grants from the Canadian Institutes of Health Research (CIHR), Genome Canada and a Howard Hughes International Research Scholar Awards to B.B.F.. C.M.R. is supported by studentships from the CIHR and the Michael Smith Foundation for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Brett Finlay.

Related links

Related links

DATABASES

Swiss-Prot

CD48

CSF-1

FimH

Fyb

IpaB

IRAK-M

LcrV

SipB

SUMO-1

TLR2

TLR4

TLR6

TLR9

YopE

YopH

YopJ

FURTHER INFORMATION

B. Brett Finlay's laboratory

Animation of MAPK activation

Macrophage micrographs

Animation of intracellular infection by Salmonella

Animation of pathogenic E. coli infection mechanism

Theriot lab collection of live cell microscopy movies of host-pathogen interactions

Glossary

ADAPTIVE IMMUNE RESPONSE

In this host defence system, which evolved in vertebrates, T and B cells respond specifically to a given antigen. This type of immune response includes antibody production and the killing of pathogen-infected cells, and is regulated by cytokines such as interferon-α.

NEUTROPHIL

A phagocytic cell of the myeloid lineage that has an important role in the inflammatory response, undergoing chemotaxis towards sites of infection or wounding.

DENDRITIC CELL

A 'professional' antigen-presenting cell that is found in T-cell areas of lymphoid tissues, but is also a minor cellular component in most tissues. These cells have a branched or dendritic morphology and are the most potent stimulators of T-cell responses.

INNATE IMMUNE RESPONSE

This is crucial during the early phase of host defence against infection by pathogens (such as bacteria and viruses), before the antigen-specific, adaptive immune response is induced.

TOLL-LIKE RECEPTORS

(TLRs). Receptors that are present on mammalian cells, mostly on those that are involved in innate or adaptive resistance to pathogens. They are homologous to the Toll receptor protein family in Drosophila melanogaster, members of which have important roles in both embryogenesis and defence against infection. TLRs have evolved to recognize molecular patterns that are conserved and shared by many microbial pathogens.

NUCLEAR FACTOR-κB

(NF-κB). A widely expressed transcription factor that is activated by cellular stress and can induce the expression of numerous proinflammatory and anti-apoptotic genes.

OXIDATIVE BURST

This consists of antibacterial reactive oxygen intermediates (ROIs), such as superoxide and hydroxyl radicals, that are produced by the phagocyte NADPH oxidase.

LIPOPOLYSACCHARIDE

(LPS). A component of the outer membrane of Gram-negative bacteria that is made of a lipid, a core oligosaccharide and an O-linked sugar side chain.

GRAM-POSITIVE BACTERIA

The cell walls of these bacteria retain a basic blue dye during the Gram-stain procedure. These cell walls are relatively thick (15–80 nm across) and consist of a network of peptidoglycans.

LIPOSOME

A lipid-based delivery system that is used to deliver DNA or protein into cells.

PHAGOCYTOSIS

An actin-dependent process, by which cells engulf external particulate material by extension and fusion of pseudopods.

GTPASE-ACTIVATING PROTEINS

Proteins that inactivate small GTP-binding proteins, such as Ras family members, by increasing their rate of GTP hydrolysis.

COMPLEMENT

Nine interacting serum proteins (C1–C9), mostly enzymes, that are activated in a coordinated way and participate in bacterial lysis and macrophage chemotaxis.

FIMH TYPE 1 PILUS

An attachment organelle that extends from the bacterial surface and contains an adhesin that is encoded by the FimH gene.

LYSOSOME

A membrane-bounded organelle with a low internal pH (4–5) that contains hydrolytic enzymes and that is the site of degradation of proteins in both the biosynthetic and the endocytic pathways.

PROTON ATPASE

A membrane protein that mediates proton influx and acidification of the phagolysosome.

METALLOPROTEINASE

A proteinase that has a metal ion at its active site.

MAJOR HISTOCOMPATIBILITY COMPLEX

(MHC). The genes encoding the MHC molecules are the most polymorphic in the genome. MHC molecules are a family of surface molecules that present antigenic peptides from foreign microbes to T cells and help the immune system to recognize self from non-self — they are the ones recognized by T cells during transplant rejection.

CREB

(cyclic AMP response-element-binding protein). A transcription factor that functions in glucose homeostasis and growth-factor-dependent cell survival, and has also been implicated in learning and memory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberger, C., Finlay, B. Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol 4, 385–396 (2003). https://doi.org/10.1038/nrm1104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing