Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Who's on first in the cellular response to DNA damage?

Key Points

  • Recognition and repair of damaged DNA is essential for genomic stability in all living cells.

  • There are several pathways of DNA repair and, for some types of damage, repair pathways might compete, or alternative pathways might operate.

  • Cellular proteins with other functions might also bind DNA lesions and influence repair.

  • The DNA-damage response is much more than simply the elimination of damage. It also involves the control of when, where and how repair should be accomplished.

  • The ultimate outcome for the cell, and for the organism of which it is a part, might depend on which protein first encounters and binds at the damaged region of DNA.

Abstract

Cellular DNA-repair pathways involve proteins that have roles in other DNA-metabolic processes, as well as those that are dedicated to damage removal. Several proteins, which have diverse functions and are not known to have roles in DNA repair, also associate with damaged DNA. These newly discovered interactions could either facilitate or hinder the recognition of DNA damage, and so they could have important effects on DNA repair and genetic integrity. The outcome for the cell, and ultimately for the organism, might depend on which proteins arrive first at sites of DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excision repair pathways for DNA damage.
Figure 2: Consequences of 'who's on first' in DNA-damage recognition.
Figure 3: Consequence 1 — facilitation of repair.
Figure 4: Consequence 2 — interference with repair.
Figure 5: Consequence 3 — redirection of damage processing.

Similar content being viewed by others

References

  1. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Caldecott, K. W. Mammalian DNA single-strand break repair: an X-ra(y)ted affair. Bioessays 23, 447–455 (2001).

    CAS  PubMed  Google Scholar 

  3. Haber, J. E. Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

    CAS  PubMed  Google Scholar 

  4. Memisoglu, A. & Samson, L. Base excision repair in yeast and mammals. Mutat. Res. 451, 39–51 (2000).

    CAS  PubMed  Google Scholar 

  5. Wood, R. D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001). A concise review that lists all of the genes that are known to be involved in human DNA-repair mechanisms.

    CAS  PubMed  Google Scholar 

  6. Jones, S. et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C→T:A mutations. Hum. Mol. Genet. 11, 2961–2967 (2002).

    CAS  PubMed  Google Scholar 

  7. Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nature Genet. 30, 227–232 (2002).

    CAS  PubMed  Google Scholar 

  8. de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    CAS  PubMed  Google Scholar 

  9. Batty, D. P. & Wood, R. D. Damage recognition in nucleotide excision repair of DNA. Gene 241, 193–204 (2000).

    CAS  PubMed  Google Scholar 

  10. Tang, J. Y., Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell 5, 737–744 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tornaletti, S. & Hanawalt, P. C. Effect of DNA lesions on transcription elongation. Biochimie 81, 139–146 (1999).

    CAS  PubMed  Google Scholar 

  12. Svejstrup, J. Q. Mechanisms of transcription-coupled DNA repair. Nature Rev. Mol. Cell Biol. 3, 21–29 (2002).

    CAS  Google Scholar 

  13. Marra, G. & Schar, P. Recognition of DNA alterations by the mismatch repair system. Biochem. J. 338, 1–13 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsieh, P. Molecular mechanisms of DNA mismatch repair. Mutat. Res. 486, 71–87 (2001).

    CAS  PubMed  Google Scholar 

  15. Viswanathan, M., Burdett, V., Baitinger, C., Modrich, P. & Lovett, S. T. Redundant exonuclease involvement in Escherichia coli methyl-directed mismatch repair. J. Biol. Chem. 276, 31053–31058 (2001).

    CAS  PubMed  Google Scholar 

  16. Burdett, V., Baitinger, C., Viswanathan, M., Lovett, S. T. & Modrich, P. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc. Natl Acad. Sci. USA 98, 6765–6770 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Modrich, P. Strand-specific mismatch repair in mammalian cells. J. Biol. Chem. 272, 24727–24730 (1997).

    CAS  PubMed  Google Scholar 

  18. Kolodner, R. D. & Marsischky, G. T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    CAS  PubMed  Google Scholar 

  19. Pegg, A. E. Repair of O6-alkylguanine by alkyltransferases. Mutat. Res. 462, 83–100 (2000).

    CAS  PubMed  Google Scholar 

  20. Duncan, T. et al. Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl Acad. Sci. USA 99, 16660–16665 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Aas, P. A. et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421, 859–863 (2003).

    CAS  PubMed  Google Scholar 

  22. Samson, L., Han, S., Marquis, J. C. & Rasmussen, L. J. Mammalian DNA repair methyltransferases shield O4MeT from nucleotide excision repair. Carcinogenesis 18, 919–924 (1997).

    CAS  PubMed  Google Scholar 

  23. Sitaram, A., Plitas, G., Wang, W. & Scicchitano, D. A. Functional nucleotide excision repair is required for the preferential removal of N-ethylpurines from the transcribed strand of the dihydrofolate reductase gene of Chinese hamster ovary cells. Mol. Cell. Biol. 17, 564–570 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hickman, M. J. & Samson, L. D. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc. Natl Acad. Sci. USA 96, 10764–10769 (1999). This paper shows that repair proteins can also participate in the signalling of apoptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Plosky, B. et al. Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes. DNA Repair (Amst.) 1, 683–696 (2002).

    CAS  Google Scholar 

  26. Sancar, G. B. Enzymatic photoreactivation: 50 years and counting. Mutat. Res. 451, 25–37 (2000).

    CAS  PubMed  Google Scholar 

  27. Sancar, A., Franklin, K. A. & Sancar, G. B. Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro. Proc. Natl Acad. Sci. USA 81, 7397–7401 (1984). The first report that a DNA-damage-recognition protein outside of an excision repair pathway could affect repair of the damage by the excision repair mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sancar, G. B. & Smith, F. W. Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol. Cell. Biol. 9, 4767–4776 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Livingstone-Zatchej, M., Meier, A., Suter, B. & Thoma, F. RNA polymerase II transcription inhibits DNA repair by photolyase in the transcribed strand of active yeast genes. Nucleic Acids Res. 25, 3795–3800 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Aboussekhra, A. & Thoma, F. Nucleotide excision repair and photolyase preferentially repair the nontranscribed strand of RNA polymerase III-transcribed genes in Saccharomyces cerevisiae. Genes Dev. 12, 411–421 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Suter, B., Livingstone-Zatchej, M. & Thoma, F. Chromatin structure modulates DNA repair by photolyase in vivo. EMBO J. 16, 2150–2160 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sebastian, J. & Sancar, G. B. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1. Proc. Natl Acad. Sci. USA 88, 11251–11255 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Iben, S. et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell 109, 297–306 (2002).

    CAS  PubMed  Google Scholar 

  34. Flores, O., Lu, H. & Reinberg, D. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J. Biol. Chem. 267, 2786–2793 (1992).

    CAS  PubMed  Google Scholar 

  35. Erdile, L. F., Heyer, W. D., Kolodner, R. & Kelly, T. J. Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. J. Biol. Chem. 266, 12090–12098 (1991).

    CAS  PubMed  Google Scholar 

  36. Mellon, I., Rajpal, D. K., Koi, M., Boland, C. R. & Champe, G. N. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272, 557–560 (1996).

    CAS  PubMed  Google Scholar 

  37. Mellon, I. & Champe, G. N. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 1292–1297 (1996). References 36 and 37 present the discovery of 'crosstalk' between DNA-damage excision repair pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leadon, S. A. & Avrutskaya, A. V. Differential involvement of the human mismatch repair proteins, hMLH1 and hMSH2, in transcription-coupled repair. Cancer Res. 57, 3784–3791 (1997).

    CAS  PubMed  Google Scholar 

  39. Conconi, A., Bespalov, V. A. & Smerdon, M. J. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc. Natl Acad. Sci. USA 99, 649–654 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Perlow, R. A. et al. DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J. Mol. Biol. 321, 29–47 (2002).

    CAS  PubMed  Google Scholar 

  41. Tornaletti, S., Donahue, B. A., Reines, D. & Hanawalt, P. C. Nucleotide sequence context effect of a cyclobutane pyrimidine dimer upon RNA polymerase II transcription. J. Biol. Chem. 272, 31719–31724 (1997).

    CAS  PubMed  Google Scholar 

  42. Christians, F. C. & Hanawalt, P. C. Lack of transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry 32, 10512–10518 (1993).

    CAS  PubMed  Google Scholar 

  43. Dammann, R. & Pfeifer, G. P. Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol. Cell. Biol. 17, 219–229 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ljungman, M., Zhang, F., Chen, F., Rainbow, A. J. & McKay, B. C. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18, 583–592 (1999).

    CAS  PubMed  Google Scholar 

  45. Wold, M. S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).

    CAS  PubMed  Google Scholar 

  46. Lao, Y., Lee, C. G. & Wold, M. S. Replication protein A interactions with DNA. 2. Characterization of double-stranded DNA-binding/helix-destabilization activities and the role of the zinc-finger domain in DNA interactions. Biochemistry 38, 3974–3984 (1999).

    CAS  PubMed  Google Scholar 

  47. Clugston, C. K., McLaughlin, K., Kenny, M. K. & Brown, R. Binding of human single-stranded DNA binding protein to DNA damaged by the anticancer drug cis-diamminedichloroplatinum (II). Cancer Res. 52, 6375–6379 (1992).

    CAS  PubMed  Google Scholar 

  48. Turchi, J. J., Henkels, K. M., Hermanson, I. L. & Patrick, S. M. Interactions of mammalian proteins with cisplatin-damaged DNA. J. Inorg. Biochem. 77, 83–87 (1999).

    CAS  PubMed  Google Scholar 

  49. Patrick, S. M. & Turchi, J. J. Human replication protein A preferentially binds cisplatin-damaged duplex DNA in vitro. Biochemistry 37, 8808–8815 (1998).

    CAS  PubMed  Google Scholar 

  50. Reardon, J. T. & Sancar, A. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage. Mol. Cell. Biol. 22, 5938–5945 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. He, Z., Henricksen, L. A., Wold, M. S. & Ingles, C. J. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374, 566–569 (1995).

    CAS  PubMed  Google Scholar 

  52. Burns, J. L., Guzder, S. N., Sung, P., Prakash, S. & Prakash, L. An affinity of human replication protein A for ultraviolet-damaged DNA. J. Biol. Chem. 271, 11607–11610 (1996).

    CAS  PubMed  Google Scholar 

  53. Lao, Y., Gomes, X. V., Ren, Y., Taylor, J. S. & Wold, M. S. Replication protein A interactions with DNA. III. Molecular basis of recognition of damaged DNA. Biochemistry 39, 850–859 (2000).

    CAS  PubMed  Google Scholar 

  54. Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M. & Wood, R. D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16, 6559–6573 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mu, D., Wakasugi, M., Hsu, D. S. & Sancar, A. Characterization of reaction intermediates of human excision repair nuclease. J. Biol. Chem. 272, 28971–28979 (1997).

    CAS  PubMed  Google Scholar 

  56. de Laat, W. L. et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12, 2598–2609 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mer, G. et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449–456 (2000).

    CAS  PubMed  Google Scholar 

  58. Wang, H., Lawrence, C. W., Li, G. M. & Hays, J. B. Specific binding of human MSH2. MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases. J. Biol. Chem. 274, 16894–16900 (1999).

    CAS  PubMed  Google Scholar 

  59. Ni, T. T., Marsischky, G. T. & Kolodner, R. D. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol. Cell 4, 439–444 (1999).

    CAS  PubMed  Google Scholar 

  60. Duckett, D. R. et al. Human MutSα recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc. Natl Acad. Sci. USA 93, 6443–6447 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mello, J. A., Acharya, S., Fishel, R. & Essigmann, J. M. The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem. Biol. 3, 579–589 (1996).

    CAS  PubMed  Google Scholar 

  62. Swann, P. F. et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273, 1109–1111 (1996).

    CAS  PubMed  Google Scholar 

  63. Kat, A. et al. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc. Natl Acad. Sci. USA 90, 6424–6428 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, J. C., Hsu, D. S., Kazantsev, A. & Sancar, A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc. Natl Acad. Sci. USA 91, 12213–12217 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Voigt, J. M., Van Houten, B., Sancar, A. & Topal, M. D. Repair of O6-methylguanine by ABC excinuclease of Escherichia coli in vitro. J. Biol. Chem. 264, 5172–5176 (1989).

    CAS  PubMed  Google Scholar 

  66. Johnson, K. A., Mierzwa, M. L., Fink, S. P. & Marnett, L. J. MutS recognition of exocyclic DNA adducts that are endogenous products of lipid oxidation. J. Biol. Chem. 274, 27112–27118 (1999).

    CAS  PubMed  Google Scholar 

  67. Johnson, K. A., Fink, S. P. & Marnett, L. J. Repair of propanodeoxyguanosine by nucleotide excision repair in vivo and in vitro. J. Biol. Chem. 272, 11434–11438 (1997).

    CAS  PubMed  Google Scholar 

  68. Gu, Y. et al. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J. Biol. Chem. 277, 11135–11142 (2002).

    CAS  PubMed  Google Scholar 

  69. Meira, L. B. et al. Mice defective in the mismatch repair gene Msh2 show increased predisposition to UVB radiation-induced skin cancer. DNA Repair (Amst.) 1, 929–934 (2002).

    CAS  Google Scholar 

  70. Bertrand, P., Tishkoff, D. X., Filosi, N., Dasgupta, R. & Kolodner, R. D. Physical interaction between components of DNA mismatch repair and nucleotide excision repair. Proc. Natl Acad. Sci. USA 95, 14278–14283 (1998). This paper shows the interaction between yeast MSH2 and NER proteins, and provides support for the model of MMR protein assistance in the repair of UV-induced DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kartalou, M. & Essigmann, J. M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 478, 1–21 (2001). A comprehensive review that discusses the interaction of HMG-domain proteins and other cellular factors with cisplatin-induced DNA damage, and the effect of these interactions on DNA repair and the normal cellular functions of these proteins.

    CAS  PubMed  Google Scholar 

  72. Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19, 5237–5246 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, J. L., Nikolov, D. B. & Burley, S. K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    CAS  PubMed  Google Scholar 

  74. Ohndorf, U. M., Rould, M. A., He, Q., Pabo, C. O. & Lippard, S. J. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  75. Takahara, P. M., Rosenzweig, A. C., Frederick, C. A. & Lippard, S. J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377, 649–652 (1995).

    CAS  PubMed  Google Scholar 

  76. Huang, J. C., Zamble, D. B., Reardon, J. T., Lippard, S. J. & Sancar, A. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl Acad. Sci. USA 91, 10394–10398 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zamble, D. B., Mu, D., Reardon, J. T., Sancar, A. & Lippard, S. J. Repair of cisplatin–DNA adducts by the mammalian excision nuclease. Biochemistry 35, 10004–10013 (1996).

    CAS  PubMed  Google Scholar 

  78. Trimmer, E. E., Zamble, D. B., Lippard, S. J. & Essigmann, J. M. Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities. Biochemistry 37, 352–362 (1998).

    CAS  PubMed  Google Scholar 

  79. McA'Nulty, M. M., Whitehead, J. P. & Lippard, S. J. Binding of Ixr1, a yeast HMG-domain protein, to cisplatin–DNA adducts in vitro and in vivo. Biochemistry 35, 6089–6099 (1996).

    CAS  PubMed  Google Scholar 

  80. McA'Nulty, M. M. & Lippard, S. J. The HMG-domain protein Ixr1 blocks excision repair of cisplatin–DNA adducts in yeast. Mutat. Res. 362, 75–86 (1996).

    PubMed  Google Scholar 

  81. Brown, S. J., Kellett, P. J. & Lippard, S. J. Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261, 603–605 (1993).

    CAS  PubMed  Google Scholar 

  82. Paull, T. T., Carey, M. & Johnson, R. C. Yeast HMG proteins NHP6A/B potentiate promoter-specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro. Genes Dev. 10, 2769–2781 (1996).

    CAS  PubMed  Google Scholar 

  83. Kruppa, M., Moir, R. D., Kolodrubetz, D. & Willis, I. M. Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol. Cell 7, 309–318 (2001).

    CAS  PubMed  Google Scholar 

  84. Didier, D. K., Schiffenbauer, J., Woulfe, S. L., Zacheis, M. & Schwartz, B. D. Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc. Natl Acad. Sci. USA 85, 7322–7326 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ohga, T. et al. Role of the human Y box-binding protein YB-1 in cellular sensitivity to the DNA-damaging agents cisplatin, mitomycin C, and ultraviolet light. Cancer Res. 56, 4224–4228 (1996).

    CAS  PubMed  Google Scholar 

  86. Ise, T. et al. Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res. 59, 342–346 (1999).

    CAS  PubMed  Google Scholar 

  87. Wong, B. et al. Binding to cisplatin-modified DNA by the Saccharomyces cerevisiae HMGB protein Nhp6A. Biochemistry 41, 5404–5414 (2002).

    CAS  PubMed  Google Scholar 

  88. Treiber, D. K., Zhai, X., Jantzen, H. M. & Essigmann, J. M. Cisplatin–DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Proc. Natl Acad. Sci. USA 91, 5672–5676 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jordan, P. & Carmo-Fonseca, M. Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res. 26, 2831–2836 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhai, X., Beckmann, H., Jantzen, H. M. & Essigmann, J. M. Cisplatin–DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Biochemistry 37, 16307–16315 (1998). This paper verifies the model of transcription-factor 'hijacking' that is proposed in reference 88, and shows that DNA-damage recognition by cellular proteins can have important repercussions on both repair and the normal functions of the proteins.

    CAS  PubMed  Google Scholar 

  91. Jung, Y., Mikata, Y. & Lippard, S. J. Kinetic studies of the TATA-binding protein interaction with cisplatin-modified DNA. J. Biol. Chem. 276, 43589–43596 (2001).

    CAS  PubMed  Google Scholar 

  92. Vichi, P. et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 16, 7444–7456 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Brand, M. et al. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 20, 3187–3196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yaneva, J., Leuba, S. H., van Holde, K. & Zlatanova, J. The major chromatin protein histone H1 binds preferentially to cis-platinum-damaged DNA. Proc. Natl Acad. Sci. USA 94, 13448–13451 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003). The most up-to-date review of FA protein interactions and evidence for their involvement in a novel repair pathway for interstrand DNA cross-links.

    CAS  Google Scholar 

  96. Dronkert, M. L. & Kanaar, R. Repair of DNA interstrand cross-links. Mutat. Res. 486, 217–247 (2001).

    CAS  PubMed  Google Scholar 

  97. Van Houten, B. Nucleotide excision repair in Escherichia coli. Microbiol. Rev. 54, 18–51 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cheng, N. C. et al. Mice with a targeted disruption of the Fanconi anemia homolog Fanca. Hum. Mol. Genet. 9, 1805–1811 (2000).

    CAS  PubMed  Google Scholar 

  99. Chen, M. et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nature Genet. 12, 448–451 (1996).

    CAS  PubMed  Google Scholar 

  100. Koomen, M. et al. Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. Hum. Mol. Genet. 11, 273–281 (2002).

    CAS  PubMed  Google Scholar 

  101. Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A. D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol. 19, 4866–4873 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. de Winter, J. P. et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet. 9, 2665–2674 (2000). This paper shows the accumulation and assembly of FA proteins into a nuclear complex in human cells, and supports the model for a DNA-damage response pathway involving these proteins.

    CAS  PubMed  Google Scholar 

  103. Garcia-Higuera, I., Kuang, Y., Denham, J. & D'Andrea, A. D. The Fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. Blood 96, 3224–3230 (2000).

    CAS  PubMed  Google Scholar 

  104. Kumaresan, K. R. & Lambert, M. W. Fanconi anemia, complementation group A, cells are defective in ability to produce incisions at sites of psoralen interstrand cross-links. Carcinogenesis 21, 741–751 (2000).

    CAS  PubMed  Google Scholar 

  105. McMahon, L. W., Sangerman, J., Goodman, S. R., Kumaresan, K. & Lambert, M. W. Human α-spectrin II and the FANCA, FANCC, and FANCG proteins bind to DNA containing psoralen interstrand cross-links. Biochemistry 40, 7025–7034 (2001).

    CAS  PubMed  Google Scholar 

  106. McMahon, L. W., Walsh, C. E. & Lambert, M. W. Human α-spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J. Biol. Chem. 274, 32904–32908 (1999).

    CAS  PubMed  Google Scholar 

  107. Otsuki, T. et al. Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex. Hum. Mol. Genet. 10, 2651–2660 (2001).

    CAS  PubMed  Google Scholar 

  108. Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21, 3414–3423 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Grompe, M. FANCD2: a branch-point in DNA damage response? Nature Med. 8, 555–556 (2002).

    CAS  PubMed  Google Scholar 

  110. Folias, A. et al. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum. Mol. Genet. 11, 2591–2597 (2002).

    CAS  PubMed  Google Scholar 

  111. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001). This paper presents evidence for a unique FA pathway that responds to DNA damage caused by cross-linking agents, in which the signal for DNA repair involves the monoubiquitylation of FANCD2 and its association with BRCA1 in nuclear foci.

    CAS  PubMed  Google Scholar 

  112. Moynahan, M. E., Cui, T. Y. & Jasin, M. Homology-directed DNA repair, mitomycin-C resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 61, 4842–4850 (2001).

    CAS  PubMed  Google Scholar 

  113. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    CAS  PubMed  Google Scholar 

  114. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Unsal-Kacmaz, K., Makhov, A. M., Griffith, J. D. & Sancar, A. Preferential binding of ATR protein to UV-damaged DNA. Proc. Natl Acad. Sci. USA 99, 6673–6678 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lupardus, P. J., Byun, T., Yee, M. C., Hekmat-Nejad, M. & Cimprich, K. A. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev. 16, 2327–2332 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Paciotti, V., Clerici, M., Lucchini, G. & Longhese, M. P. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev. 14, 2046–2059 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Melo, J. A., Cohen, J. & Toczyski, D. P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pommier, Y., Pourquier, P., Fan, Y. & Strumberg, D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim. Biophys. Acta 1400, 83–105 (1998).

    CAS  PubMed  Google Scholar 

  120. Fortune, J. M. & Osheroff, N. Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol. 64, 221–253 (2000).

    CAS  PubMed  Google Scholar 

  121. Hsiang, Y. H., Lihou, M. G. & Liu, L. F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 49, 5077–5082 (1989).

    CAS  PubMed  Google Scholar 

  122. Tsao, Y. P., Russo, A., Nyamuswa, G., Silber, R. & Liu, L. F. Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res. 53, 5908–5914 (1993).

    CAS  PubMed  Google Scholar 

  123. Strumberg, D. et al. Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol. Cell. Biol. 20, 3977–3987 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bendixen, C., Thomsen, B., Alsner, J. & Westergaard, O. Camptothecin-stabilized topoisomerase I-DNA adducts cause premature termination of transcription. Biochemistry 29, 5613–5619 (1990).

    CAS  PubMed  Google Scholar 

  125. Wu, J. & Liu, L. F. Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res. 25, 4181–4186 (1997). This paper shows an increase in Top1-linked DNA breaks in human fibroblasts after exposure to UV, and is the first evidence of a cellular response by topoisomerases to the induction of DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kingma, P. S. & Osheroff, N. The response of eukaryotic topoisomerases to DNA damage. Biochim. Biophys. Acta 1400, 223–232 (1998).

    CAS  PubMed  Google Scholar 

  127. Subramanian, D., Rosenstein, B. S. & Muller, M. T. Ultraviolet-induced DNA damage stimulates topoisomerase I-DNA complex formation in vivo: possible relationship with DNA repair. Cancer Res. 58, 976–984 (1998).

    CAS  PubMed  Google Scholar 

  128. Pommier, Y. et al. Benzo[a]pyrene diol epoxide adducts in DNA are potent suppressors of a normal topoisomerase I cleavage site and powerful inducers of other topoisomerase I cleavages. Proc. Natl Acad. Sci. USA 97, 2040–2045 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Pourquier, P. et al. Induction of topoisomerase I cleavage complexes by 1-β-D-arabinofuranosylcytosine (ara-C) in vitro and in ara-C-treated cells. Proc. Natl Acad. Sci. USA 97, 1885–1890 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pourquier, P. et al. Gemcitabine (2′,2′-difluoro-2′-deoxycytidine), an antimetabolite that poisons topoisomerase I. Clin. Cancer Res. 8, 2499–2504 (2002).

    CAS  PubMed  Google Scholar 

  131. Stevnsner, T., Mortensen, U. H., Westergaard, O. & Bonven, B. J. Interactions between eukaryotic DNA topoisomerase I and a specific binding sequence. J. Biol. Chem. 264, 10110–10113 (1989).

    CAS  PubMed  Google Scholar 

  132. Thomsen, B. et al. Characterization of the interaction between topoisomerase II and DNA by transcriptional footprinting. J. Mol. Biol. 215, 237–244 (1990).

    CAS  PubMed  Google Scholar 

  133. Nitiss, J. L., Nitiss, K. C., Rose, A. & Waltman, J. L. Overexpression of type I topoisomerases sensitizes yeast cells to DNA damage. J. Biol. Chem. 276, 26708–26714 (2001).

    CAS  PubMed  Google Scholar 

  134. Chakraverty, R. K. et al. Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint. Mol. Cell. Biol. 21, 7150–7162 (2001). This study shows the involvement of Top3 in the S-phase DNA-damage checkpoint of yeast, and is the first evidence for a physiological role for a topoisomerase enzyme in a DNA-damage response pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, T. K. et al. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 13, 1553–1560 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lagarkova, M. A., Iarovaia, O. V. & Razin, S. V. Large-scale fragmentation of mammalian DNA in the course of apoptosis proceeds via excision of chromosomal DNA loops and their oligomers. J. Biol. Chem. 270, 20239–20241 (1995).

    CAS  PubMed  Google Scholar 

  137. Cline, S. D., Jones, W. R., Stone, M. P. & Osheroff, N. DNA abasic lesions in a different light: solution structure of an endogenous topoisomerase II poison. Biochemistry 38, 15500–15507 (1999).

    CAS  PubMed  Google Scholar 

  138. Sabourin, M. & Osheroff, N. Sensitivity of human type II topoisomerases to DNA damage: stimulation of enzyme-mediated DNA cleavage by abasic, oxidized and alkylated lesions. Nucleic Acids Res. 28, 1947–1954 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wilstermann, A. M. & Osheroff, N. Base excision repair intermediates as topoisomerase II poisons. J. Biol. Chem. 276, 46290–46296 (2001).

    CAS  PubMed  Google Scholar 

  140. Pourquier, P. et al. Induction of reversible complexes between eukaryotic DNA topoisomerase I and DNA-containing oxidative base damages. 7, 8-dihydro-8-oxoguanine and 5-hydroxycytosine. J. Biol. Chem. 274, 8516–8523 (1999).

    CAS  PubMed  Google Scholar 

  141. Pourquier, P. et al. Topoisomerase I-mediated cytotoxicity of N-methyl-N′-nitro-N-nitrosoguanidine: trapping of topoisomerase I by the O6-methylguanine. Cancer Res. 61, 53–58 (2001).

    CAS  PubMed  Google Scholar 

  142. Pourquier, P., Bjornsti, M. A. & Pommier, Y. Induction of topoisomerase I cleavage complexes by the vinyl chloride adduct 1,N6-ethenoadenine. J. Biol. Chem. 273, 27245–27249 (1998).

    CAS  PubMed  Google Scholar 

  143. Lanza, A., Tornaletti, S., Rodolfo, C., Scanavini, M. C. & Pedrini, A. M. Human DNA topoisomerase I-mediated cleavages stimulated by ultraviolet light-induced DNA damage. J. Biol. Chem. 271, 6978–6986 (1996).

    CAS  PubMed  Google Scholar 

  144. Corbett, A. H., Zechiedrich, E. L., Lloyd, R. S. & Osheroff, N. Inhibition of eukaryotic topoisomerase II by ultraviolet-induced cyclobutane pyrimidine dimers. J. Biol. Chem. 266, 19666–19671 (1991).

    CAS  PubMed  Google Scholar 

  145. Pommier, Y. et al. Position-specific trapping of topoisomerase I-DNA cleavage complexes by intercalated benzo[a]-pyrene diol epoxide adducts at the 6-amino group of adenine. Proc. Natl Acad. Sci. USA 97, 10739–10744 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pourquier, P. et al. Trapping of mammalian topoisomerase I and recombination induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J. Biol. Chem. 272, 26441–26447 (1997).

    CAS  PubMed  Google Scholar 

  147. Wang, Y., Knudsen, B. R., Bjergbaek, L., Westergaard, O. & Andersen, A. H. Stimulated activity of human topoisomerases IIα and IIβ on RNA-containing substrates. J. Biol. Chem. 274, 22839–22846 (1999).

    CAS  PubMed  Google Scholar 

  148. Wang, Y., Thyssen, A., Westergaard, O. & Andersen, A. H. Position-specific effect of ribonucleotides on the cleavage activity of human topoisomerase II. Nucleic Acids Res. 28, 4815–4821 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cline, S. D. & Osheroff, N. Cytosine arabinoside lesions are position-specific topoisomerase II poisons and stimulate DNA cleavage mediated by the human type II enzymes. J. Biol. Chem. 274, 29740–29743 (1999).

    CAS  PubMed  Google Scholar 

  150. Perrino, F. W., Miller, H. & Ealey, K. A. Identification of a 3′→5′–exonuclease that removes cytosine arabinoside monophosphate from 3′ termini of DNA. J. Biol. Chem. 269, 16357–16363 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Ganesan and C. A. Smith for their helpful discussions, and the National Institutes of Health for supporting our research. In addition, we would like to acknowledge the referees for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Hanawalt.

Related links

Related links

DATABASES

OMIM

ATR

BRCA1

HMG1

MLH1

MSH2

mtTFA

SPTAN1

SRY

topoisomerase

YB-1

Saccharomyces Genome Database

Ixr1

Nhp6A

Nhp6B

Phr1

Top1

Top2

Top3

FURTHER INFORMATION

Philip C. Hanawalt's laboratory

DNA repair interest group

Human DNA repair genes

Protein Data Bank

Glossary

EXCISION REPAIR

A process for repairing chemical damage, mismatches or small loops in DNA, in which a single-stranded section containing the aberrant structure is removed and the resulting gap is filled by DNA replication that is templated from the complementary strand.

BASE EXCISION REPAIR

(BER). The replacement of DNA bases that are altered by small chemical modifications through the excision of only the damaged nucleotide (short-patch BER) or through the removal of 2–13 nucleotides containing the damaged nucleotide (long-patch BER).

NUCLEOTIDE EXCISION REPAIR

(NER). The replacement of DNA bases that are altered by large chemical additions or cross-links through the excision of a short, single-stranded segment containing the damage.

MISMATCH REPAIR

(MMR). An excision repair pathway that identifies and corrects mispaired bases and 1–3-nucleotide loops that result from DNA polymerase errors during replication.

DNA GLYCOSYLASE

An enyzme that binds selectively to a damaged DNA base and hydrolyses the N-glycosylic bond to release the altered base from the sugar–phosphate backbone leaving an abasic site.

AP LYASE

A nicking activity that is associated with some DNA glycosylases, which cuts the DNA strand on the 3′-side of an abasic site leaving a 5′-phosphate and a 3′-fragmented deoxyribose.

AP ENDONUCLEASE

An enzyme that binds an abasic site and creates a nick on the 5′-side, yielding a 3′-hydroxyl and a 5′-abasic sugar phosphate. AP endonucleases also have a 3′-diesterase activity, which can nick 5′ of the abasic deoxyribose remaining after AP lyase activity.

DNA POLYMERASE

An enzyme that replicates a DNA strand using the complementary DNA strand as a template. DNA polymerase β replaces the nucleotide removed in short-patch BER. Several DNA polymerases, including α, β, δ and ε, might be involved in long-patch BER.

XERODERMA PIGMENTOSUM

(XP). An hereditary disorder arising from defects in genes from seven complementation groups (XPA–XPG), which are involved in the early steps of the nucleotide excision repair pathway, and an eighth group, XPV, with mutations in the translesion DNA polymerase η.

COCKAYNE'S SYNDROME

(CS). An autosomal-recessive disease that is characterized by neural and skeletal-development abnormalities and severe photosensitivity, but with no cancer-predisposition phenotype. Cell lines derived from these patients are defective in transcription-coupled DNA repair.

REPLICATION PROTEIN A

(RPA). A three-subunit complex that binds single-stranded DNA and is required for initiation from origins of replication and nascent DNA synthesis. RPA also functions in NER.

TFIIH

A basal transcription factor complex of nine subunits that includes the XPB and XPD helicases, which are necessary for its function in DNA repair.

TRANSCRIPTION-COUPLED REPAIR

(TCR). A dedicated pathway for the excision repair of DNA damage in the transcribed strand that arrests the translocating RNA polymerase.

DNA PRIMASE

An enzyme that synthesizes short RNA sequences used as primers for lagging-strand DNA synthesis by the DNA polymerase.

CISPLATIN

A platinum-containing drug that is used in cancer therapy and forms intra- and interstrand cross-links between DNA bases, of which the primary adducts are intrastrand-1,2-d(GpG) and 1,2-d(ApG).

HIGH-MOBILITY-GROUP (HMG) BOX

A minor-groove DNA-binding domain that is found in proteins with various cellular functions.

TATA-BINDING PROTEIN

(TBP). A protein that binds to the minor groove of the TATA-box sequence of gene promoters to initiate transcription.

Y-BOX-BINDING PROTEIN-1

(YB-1). A transcription factor that binds inverted CCAAT-box sequences that are found in the promoter region of many genes.

TFTC

A complex of transcription-initiation factors for RNA polymerase II that lacks TBP and can mediate transcription from both TATA-containing and TATA-less promoters.

HISTONE H1

A protein that binds to linker regions of DNA between nucleosome core particles to facilitate the folding of these particles into a 30-nm chromatin fibre and to stabilize higher-order chromosomal structure.

FANCONI ANAEMIA

(FA). A chromosomal-instability syndrome that is characterized by bone-marrow failure, congenital defects, increased cancer susceptibility and cellular sensitivity to various DNA-damaging agents.

FUROCOUMARINS

Photosensitive tricyclic compounds that can intercalate into DNA and, on activation by UVA (320–400-nm) light, can react with thymine to form monoadducts and interstrand cross-links. Primary examples are the psoralens.

SPECTRIN

A tetrameric membrane protein that associates with actin, ankyrin and calmodulin for cytoskeletal formation and secretory-vesicle transport in the cytoplasm.

SWI/SNF COMPLEX

ATP-dependent chromatin-remodelling complex, which changes the superhelical torsion of DNA in nucleosomes to regulate the transcription of genes.

ATAXIA-TELANGIECTASIA

(AT). An autosomal-recessive chromosomal instability disease that is characterized by clinical and cellular sensitivity to ionizing radiation and abnormalities in the nervous, endocrine and immune systems as well as in the skin.

CHK1 AND CHK2

Serine/threonine kinases that are believed to function downstream of ATM and ATR and to phosphorylate p53 in the cellular DNA-damage response.

PROLIFERATING CELL NUCLEAR ANTIGEN

(PCNA). A protein complex that forms a clamp on DNA and associates with DNA polymerases to increase their processivity during DNA synthesis. It also associates with RPA and DNA polymerase β during DNA repair.

DNA TOPOISOMERASES

A group of enzymes that control the superhelical density of DNA and resolve DNA topological structures through rotational and DNA-strand-passage mechanisms involving the formation of transient protein-linked DNA breaks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cline, S., Hanawalt, P. Who's on first in the cellular response to DNA damage?. Nat Rev Mol Cell Biol 4, 361–373 (2003). https://doi.org/10.1038/nrm1101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing