Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Coat proteins: shaping membrane transport

Abstract

Coat proteins allow the selective transfer of macromolecules from one membrane-enclosed compartment to another by concentrating macromolecules into specialized membrane patches and then deforming these patches into small coated vesicles. Recent findings indicate that coat proteins might also participate in the differentiation of membrane domains within organelles and large transport carriers, as well as in the association of the carriers with the cytosketelon and with acceptor organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological diversity of coated structures.
Figure 2: A schematic representation of the components of various protein coats.
Figure 3: Models for the generation of coated carriers.
Figure 4: The dynamic properties of coat proteins in living cells.

Similar content being viewed by others

References

  1. Palade, G. Intracellular aspects of the process of protein secretion. Science 189, 347–358 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Roth, T. E. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes Aegypti L. J. Cell Biol. 20, 313–332 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friend, D. S. & Farquhar, M. G. Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol. 35, 357–376 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanaseki, T. & Kadota, K. The 'vesicle in a basket'. A morphological study of the coated vesicle isolated from the nerve endings of guinea pig brain, with special reference to the mechanism of membrane movement. J. Cell Biol. 42, 202–220 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pearse, B. M. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97, 93–98 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Robinson, M. Adaptins. Trends Cell Biol. 2, 293–297 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Heilker, R., Spiess, M. & Crottet, P. Recognition of sorting signals by clathrin adaptors. Bioessays 21, 558–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Slepnev, V. I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  11. Boman, A. L. GGA proteins: new players in the sorting game. J. Cell Sci. 114, 3413–3418 (2001).

    CAS  PubMed  Google Scholar 

  12. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Kirchhausen, T. Three ways to make a vesicle. Nature Rev. Mol. Cell Biol. 1, 187–198 (2000).

    Article  CAS  Google Scholar 

  17. Donaldson, J. G. & Jackson, C. L. Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 12, 475–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Waters, M. G., Serafini, T. & Rothman, J. E. 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349, 248–251 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Dell'Angelica, E. C. et al. AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J. 15, 917–928 (1997).

    Article  Google Scholar 

  22. Simpson, F., Peden, A. A., Christopoulou, L. & Robinson, M. S. Characterization of the adaptor-related protein complex, AP-3. J. Cell Biol. 137, 835–845 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dell'Angelica, E. C., Mullins, C. & Bonifacino, J. S. AP-4, a novel protein complex related to clathrin adaptors. J. Biol. Chem. 274, 7278–7285 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hirst, J., Bright, N. A., Rous, B. & Robinson, M. S. Characterization of a fourth adaptor-related protein complex. Mol. Biol. Cell 10, 2787–2802 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dell'Angelica, E. C., Klumperman, J., Stoorvogel, W. & Bonifacino, J. S. Association of the AP-3 adaptor complex with clathrin. Science 280, 431–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Peden, A. A., Rudge, R. E., Lui, W. W. & Robinson, M. S. Assembly and function of AP-3 complexes in cells expressing mutant subunits. J. Cell Biol. 156, 327–336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boehm, M. & Bonifacino, J. S. Adaptins: the final recount. Mol. Biol. Cell 12, 2907–2920 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Antonny, B. & Schekman, R. ER export: public transportation by the COPII coach. Curr. Opin. Cell Biol. 13, 438–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Orci, L., Glick, B. S. & Rothman, J. E. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport through the Golgi stack. Cell 46, 171–184 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Bednarek, S. Y. et al. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83, 1183–1196 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C. & Rothman, J. E. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58, 329–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Presley, J. F. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, F., Nesterov, A., Carter, R. E. & Sorkin, A. Trafficking of yellow-fluorescent-protein-tagged μ1 subunit of clathrin adaptor AP-1 complex in living cells. Traffic 2, 345–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Waguri, S. et al. Visualization of TGN to endosomes trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol. Biol. Cell 14, 142–155 (2002).

    Article  Google Scholar 

  37. Puertollano, R. et al. Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network. Mol. Biol. Cell (in the press).

  38. Kaether, C., Skehel, P. & Dotti, C. G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell 11, 1213–1224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahmari, S. E., Buchanan, J. & Smith, S. J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131, 875–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Shiba, Y., Takatsu, H., Shin, H. W. & Nakayama, K. γ-adaptin interacts directly with rabaptin-5 through its ear domain. J. Biochem. (Tokyo) 131, 327–336 (2002).

    Article  CAS  Google Scholar 

  44. Volchuk, A. et al. Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack. Cell 102, 335–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Heuser, J. & Kirchhausen, T. Deep-etch views of clathrin assemblies. J. Ultrastruct. Res. 92, 1–27 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Raposo, G., Tenza, D., Murphy, D. M., Berson, J. F. & Marks, M. S. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 152, 809–824 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, X. et al. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol. 155, 291–300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, X. et al. Adaptor and clathrin exchange at the plasma membrane and trans-Golgi network. Mol. Biol. Cell 14, 516–528 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).

    CAS  PubMed  Google Scholar 

  52. Lederkremer, G. Z. et al. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc. Natl Acad. Sci. USA 98, 10704–10709 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Caplan and M. Boehm for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan S. Bonifacino.

Related links

Related links

DATABASES

InterPro

ENTH

LocusLink

GGAs

Swiss-Prot

β1-adaptin

γ-adaptin

Arf1

Arf3

Eps15

Eps15R

epsin 1

KIF13A

Rabaptin-5

FURTHER INFORMATION

Juan S. Bonifacino's laboratory

Jennifer Lippincott-Schwartz's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonifacino, J., Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4, 409–414 (2003). https://doi.org/10.1038/nrm1099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing