Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Histone acetylation and deacetylation in yeast

Key Points

  • In the yeast Saccharomyces cerevisiae, histone acetylation and deacetylation occur through both targeted and global mechanisms. In the targeted mechanism, histone acetyltransferase (HAT) and deacetylase (HDAC) enzymes are recruited to promoters by specific transcriptional activators and repressors, respectively. In the global mechanism, HATs and HDACs enzymatically modify histones throughout large chromatin domains, including coding sequences, without any apparent DNA-sequence specificity.

  • Each of five related HDACs in yeast (Hda1, Rpd3, Hos1, Hos2 and Hos3) deacetylates specific sets of genes and regions of the genome. Such 'division of labour' might organize the affected genes in functional and/or physical domains, such as the HAST (for Hda1-affected subtelomeric) domains that are deacetylated by Hda1 and contain genes that are required for growth in adverse conditions.

  • In addition to their effects on chromatin structure, specific acetylated and deacetylated lysine residues in histones function as binding sites for factors that interact with chromatin. A bromodomain is a protein motif that binds to singly or doubly acetylated histone amino termini. It is found in several eukaryotic transcription factors, as well as HATs and members of chromatin-remodelling complexes.

  • Other than transcription, histone acetylation and deacetylation function in the regulation of other DNA-based processes. In DNA replication, increased histone acetylation directly causes the earlier firing of replication origins in yeast. In DNA repair, a single acetylated lysine in histone H4 is required for the proper repair of double-strand breaks. In heterochromatin, unacetylated lysine 16 of histone H4 is required for the formation of telomeric heterochromatin, whereas acetylation of this lysine functions as a barrier to the spread of heterochromatin.

  • Contrary to the repressive role of other known deacetylases, the Hos2 HDAC binds to and deacetylates histones in the coding region of genes only during gene activity and is required for efficient transcriptional activation.

Abstract

Histone acetylation and deacetylation in the yeast Saccharomyces cerevisiae occur by targeting acetyltransferase and deacetylase enzymes to gene promoters and, in an untargeted and global manner, by affecting most nucleosomes. Recently, new roles for histone acetylation have been uncovered, not only in transcription but also in DNA replication, repair and heterochromatin formation. Interestingly, specific acetylatable lysines can function as binding sites for regulatory factors. Moreover, histone deacetylation is not only repressive but can be required for gene activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histone acetylation and deacetylation regulate gene transcription.
Figure 2: A cascading model for the successive recruitment of protein complexes for transcription of the human interferon-β gene.
Figure 3: Histone acetylation and deacetylation regulate the formation of heterochromatin and the distance along which it spreads.
Figure 4: A model for the role of Hos2 histone deacetylase in gene activity.

Similar content being viewed by others

References

  1. Allfrey, V. G., Faulkner, R. M. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    CAS  PubMed  Google Scholar 

  3. Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145 (1988).

    CAS  PubMed  Google Scholar 

  4. Clark-Adams, C. D., Norris, D., Osley, M. A., Fassler, J. S. & Winston, F. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2, 150–159 (1988).

    CAS  PubMed  Google Scholar 

  5. Durrin, L. K., Mann, R. K., Kayne, P. S. & Grunstein, M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65, 1023–1031 (1991).

    CAS  PubMed  Google Scholar 

  6. Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615–626 (1998).

    CAS  PubMed  Google Scholar 

  7. Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    CAS  PubMed  Google Scholar 

  9. Zhang, Y. et al. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell 1, 1021–1031 (1998).

    CAS  PubMed  Google Scholar 

  10. Lechner, T. et al. Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3·Rpd3 histone deacetylase complex and is required for histone deacetylase activity. J. Biol. Chem. 275, 40961–40966 (2000).

    CAS  PubMed  Google Scholar 

  11. Loewith, R. et al. Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. J. Biol. Chem. 276, 24068–24074 (2001).

    CAS  PubMed  Google Scholar 

  12. Kurdistani, S. K., Robyr, D., Tavazoie, S. & Grunstein, M. Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nature Genet. 31, 248–254 (2002). In this study a novel crosslinking protocol was used for chromatin immunoprecipitation of Rpd3.

    CAS  PubMed  Google Scholar 

  13. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002). This reference provides a searchable database for yeast protein–protein interactions.

    CAS  PubMed  Google Scholar 

  14. Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997). This study elucidates the promoter targeting mechanism of a yeast histone deacetylase.

    CAS  PubMed  Google Scholar 

  15. Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M. & Grunstein, M. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392, 831–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Kadosh, D. & Struhl, K. Targeted recruitment of the Sin3–Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18, 5121–5127 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suka, N., Suka, Y., Carmen, A. A., Wu, J. & Grunstein, M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8, 473–479 (2001). This study reports highly specific antibodies against individual sites of histone acetylation in yeast.

    CAS  PubMed  Google Scholar 

  18. Deckert, J. & Struhl, K. Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol. Cell. Biol. 22, 6458–6470 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, J., Suka, N., Carlson, M. & Grunstein, M. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7, 117–126 (2001).

    CAS  PubMed  Google Scholar 

  20. Kuo, M. H., vom Baur, E., Struhl, K. & Allis, C. D. Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol. Cell 6, 1309–1320 (2000).

    CAS  PubMed  Google Scholar 

  21. Allard, S. et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18, 5108–5119 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Reid, J. L., Iyer, V. R., Brown, P. O. & Struhl, K. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol. Cell 6, 1297–1307 (2000).

    CAS  PubMed  Google Scholar 

  23. Bernstein, B. E., Tong, J. K. & Schreiber, S. L. Genomewide studies of histone deacetylase function in yeast. Proc. Natl Acad. Sci. USA 97, 13708–13713 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000). This paper provides a searchable database for the genome wide expression analysis of 300 conditions in yeast.

    Article  CAS  PubMed  Google Scholar 

  25. Robyr, D. et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437–446 (2002).

    CAS  PubMed  Google Scholar 

  26. Wang, A., Kurdistani, S. & Grunstein, M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 298, 1412–1414 (2002). This paper shows that a histone deacetylase is directly required for gene activity.

    CAS  PubMed  Google Scholar 

  27. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Mutskov, V. et al. Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding. Mol. Cell. Biol. 18, 6293–6304 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tse, C., Sera, T., Wolffe, A. P. & Hansen, J. C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Horn, P. J. & Peterson, C. L. Molecular biology. Chromatin higher order folding — wrapping up transcription. Science 297, 1824–1827 (2002).

    CAS  PubMed  Google Scholar 

  31. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).

    CAS  PubMed  Google Scholar 

  32. Johnson, L. M., Kayne, P. S., Kahn, E. S. & Grunstein, M. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 87, 6286–6290 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hecht, A., Strahl-Bolsinger, S. & Grunstein, M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383, 92–96 (1996).

    CAS  PubMed  Google Scholar 

  34. Carmen, A. A., Milne, L. & Grunstein, M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J. Biol. Chem. 277, 4778–4781 (2002).

    CAS  PubMed  Google Scholar 

  35. Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M. & Broach, J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16, 4349–4356 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Megee, P. C., Morgan, B. A., Mittman, B. A. & Smith, M. M. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247, 841–845 (1990).

    CAS  PubMed  Google Scholar 

  37. Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572 (1992).

    CAS  PubMed  Google Scholar 

  38. Winston, F. & Allis, C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol. 6, 601–604 (1999).

    CAS  PubMed  Google Scholar 

  39. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    CAS  PubMed  Google Scholar 

  40. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    CAS  PubMed  Google Scholar 

  41. Agalioti, T., Chen, G. & Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–392 (2002). This report provides details on the recognition of specifically acetylated lysines in histones H3 and H4 by two transcription factors.

    CAS  PubMed  Google Scholar 

  42. Syntichaki, P., Topalidou, I. & Thireos, G. The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature 404, 414–417 (2000).

    CAS  PubMed  Google Scholar 

  43. Hassan, A. H., Neely, K. E. & Workman, J. L. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    CAS  PubMed  Google Scholar 

  44. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002). References 39–44 report data on the structure and function of bromodomains.

    CAS  PubMed  Google Scholar 

  45. Vogelauer, M., Wu, J., Suka, N. & Grunstein, M. Global histone acetylation and deacetylation in yeast. Nature 408, 495–498 (2000).

    CAS  PubMed  Google Scholar 

  46. Krebs, J. E., Fry, C. J., Samuels, M. L. & Peterson, C. L. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 102, 587–598 (2000).

    CAS  PubMed  Google Scholar 

  47. Waterborg, J. H. Dynamics of histone acetylation in Saccharomyces cerevisiae. Biochemistry 40, 2599–2605 (2001).

    CAS  PubMed  Google Scholar 

  48. Yamagoe, S. et al. Interaction of histone acetylases and deacetylases in vivo. Mol. Cell. Biol. 23, 1025–1033 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Katan-Khaykovich, Y. & Struhl, K. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes. Dev. 16, 743–752 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ivessa, A. S. & Zakian, V. A. To fire or not to fire: origin activation in Saccharomyces cerevisiae ribosomal DNA. Genes Dev. 16, 2459–2464 (2002).

    CAS  PubMed  Google Scholar 

  51. Ferguson, B. M. & Fangman, W. L. A position effect on the time of replication origin activation in yeast. Cell 68, 333–339 (1992).

    CAS  PubMed  Google Scholar 

  52. Ferguson, B. M., Brewer, B. J., Reynolds, A. E. & Fangman, W. L. A yeast origin of replication is activated late in S phase. Cell 65, 507–515 (1991).

    CAS  PubMed  Google Scholar 

  53. Friedman, K. L. et al. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev. 10, 1595–1607 (1996).

    CAS  PubMed  Google Scholar 

  54. Stevenson, J. B. & Gottschling, D. E. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 13, 146–151 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21–30 (2001).

    CAS  PubMed  Google Scholar 

  56. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).

    CAS  PubMed  Google Scholar 

  57. Cimbora, D. M. et al. Long-distance control of origin choice and replication timing in the human β-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581–5591 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Iizuka, M. & Stillman, B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 274, 23027–23034 (1999).

    CAS  PubMed  Google Scholar 

  59. Burke, T. W., Cook, J. G., Asano, M. & Nevins, J. R. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J. Biol. Chem. 276, 15397–15408 (2001).

    CAS  PubMed  Google Scholar 

  60. Megee, P. C., Morgan, B. A. & Smith, M. M. Histone H4 and the maintenance of genome integrity. Genes Dev. 9, 1716–1727 (1995).

    CAS  PubMed  Google Scholar 

  61. Bird, A. W. et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415 (2002). This paper reports the direct role of histone acetylation in DNA repair.

    CAS  PubMed  Google Scholar 

  62. Choy, J. S. & Kron, S. J. NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol. Cell. Biol. 22, 8215–8225 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Qin, S. & Parthun, M. R. Histone h3 and the histone acetyltransferase hat1p contribute to DNA double-strand break repair. Mol. Cell. Biol. 22, 8353–8365 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Koyama, H., Itoh, M., Miyahara, K. & Tsuchiya, E. Abundance of the RSC nucleosome-remodeling complex is important for the cells to tolerate DNA damage in Saccharomyces cerevisiae. FEBS Lett. 531, 215–221 (2002).

    CAS  PubMed  Google Scholar 

  65. Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moretti, P., Freeman, K., Coodly, L. & Shore, D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8, 2257–2269 (1994).

    CAS  PubMed  Google Scholar 

  67. Luo, K., Vega-Palas, M. A. & Grunstein, M. Rap1–Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 16, 1528–1539 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoppe, G. J. et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22, 4167–4180 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rusche, L. N., Kirchmaier, A. L. & Rine, J. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2207–2222 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kayne, P. S. et al. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55, 27–39 (1988).

    CAS  PubMed  Google Scholar 

  71. Thompson, J. S., Ling, X. & Grunstein, M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369, 245–247 (1994).

    CAS  PubMed  Google Scholar 

  72. Renauld, H. et al. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7, 1133–1145 (1993).

    CAS  PubMed  Google Scholar 

  73. Donze, D. & Kamakaka, R. T. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 20, 520–531 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Suka, N., Luo, K. & Grunstein, M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nature Genet. 32, 378–383 (2002).

    CAS  PubMed  Google Scholar 

  75. Kimura, A., Umehara, T. & Horikoshi, M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nature Genet. 32, 370–377 (2002).

    PubMed  Google Scholar 

  76. Orphanides, G. & Reinberg, D. RNA polymerase II elongation through chromatin. Nature 407, 471–475 (2000).

    CAS  PubMed  Google Scholar 

  77. Protacio, R. U., Li, G., Lowary, P. T. & Widom, J. Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol. Cell. Biol. 20, 8866–8878 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Otero, G. et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118 (1999).

    CAS  PubMed  Google Scholar 

  79. Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).

    CAS  PubMed  Google Scholar 

  80. Pokholok, D. K., Hannett, N. M. & Young, R. A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 9, 799–809 (2002).

    CAS  PubMed  Google Scholar 

  81. Logie, C., Tse, C., Hansen, J. C. & Peterson, C. L. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes. Biochemistry 38, 2514–2522 (1999).

    CAS  PubMed  Google Scholar 

  82. Kim, Y. & Clark, D. J. SWI/SNF-dependent long-range remodeling of yeast HIS3 chromatin. Proc. Natl Acad. Sci. USA 99, 15381–15386 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lo, W. S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5, 917–926 (2000).

    CAS  PubMed  Google Scholar 

  84. Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    CAS  PubMed  Google Scholar 

  85. Ng, H. H., Xu, R. M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002). References 84 and 85 describe evidence that modification of one histone affects modifications of other histones.

    CAS  PubMed  Google Scholar 

  86. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    CAS  PubMed  Google Scholar 

  87. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  88. Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    CAS  PubMed  Google Scholar 

  89. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  90. Turner, B. M. & O'Neill, L. P. Histone acetylation in chromatin and chromosomes. Semin. Cell. Biol. 6, 229–236 (1995).

    CAS  PubMed  Google Scholar 

  91. Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002). References 89–91 provide alternative interpretations of the complexity of histone modifications.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.K.K. is a Howard Hughes Medical Institute Physician Postdoctoral Fellow. This work was supported by Public Health Service grants from the National Institutes of Health to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grunstein.

Related links

Related links

DATABASES

InterPro

bromodomain

Swiss-Prot

Elp3

Esa1

Gcn5

Hda1

Hos1

Hos2

Hos3

Rap1

Rpd3

Sas2

Sin3

Sir2

Sir3

Sir4

Ume6

FURTHER INFORMATION

Michael Grunstein's laboratory

Glossary

ACETYLATION

The covalent addition of the acetyl chemical group to lysine residues in histones and other proteins that neutralizes the positive charge of the ε-amino group of the lysine side chain. Deacetylation removes the acetyl group, thereby restoring the positive charge.

NUCLEOSOME

The fundamental unit of chromatin, which is composed of 147 bp of DNA wrapped around an octameric core of histone proteins (two molecules each of H2A, H2B, H3 and H4).

HISTONE ACETYLTRANSFERASE

(HAT). An enzyme that catalyses the addition of acetyl groups to the lysine residues of histones.

HISTONE DEACETYLASE

(HDAC). An enzyme that catalyses the removal of acetyl groups from the lysine residues of histones.

HETEROCHROMATIN

A region of chromosome that is structurally condensed or inaccessible to molecular probes in interphase, and is generally transcriptionally silent and late replicating in S phase.

CHROMATIN IMMUNOPRECIPITATION

(ChIP). A technique that combines immunoprecipitation of chromatin fragments and polymerase chain reaction (PCR) to semi-quantifiably map sites of protein–DNA interaction in vivo.

CHROMATIN REMODELLING

An alteration in chromatin structure that is often achieved by the covalent modifications of histones and/or the action of ATP-dependent remodelling complexes. Remodelling can allow the increased access of transcription factors to chromatin.

BASAL TRANSCRIPTION

Transcription that occurs in the absence of any activating signal.

DNA MICROARRAY

A high-throughput screening method developed initially for genome-wide differential expression analysis. It involves probing known DNA sequences that are printed at high density on a glass slide.

EUCHROMATIN

Regions of the genome that are less condensed in interphase and contain most active genes.

ENHANCER

A regulatory DNA sequence that can influence the rate of transcription of a promoter at a distance.

SILENT MATING-TYPE LOCI

Two regions on yeast chromosome III that determine the mating type of a yeast cell as a or α. They are assembled into heterochromatin by proteins (for example, Rap1, Sir2–4) that also participate in the formation of telomeric heterochromatin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurdistani, S., Grunstein, M. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4, 276–284 (2003). https://doi.org/10.1038/nrm1075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing