HIGHLIGHTS

HIGHLIGHTS ADVISORS

JOAN S. BRUGGE

HARVARD MEDICAL SCHOOL, BOSTON, MA, USA

PASCALE COSSART INSTITUT PASTEUR, PARIS, FRANCE

GIDEON DREYFUSS

UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA, USA

PAMELA GANNON

CELL AND MOLECULAR BIOLOGY ONLINE

JEAN GRUENBERG

UNIVERSITY OF GENEVA, SWITZERLAND

ULRICH HARTL

MAX-PLANCK-INSTITUTE, MARTINSRIED, GERMANY

NOBUTAKA HIROKAWA

UNIVERSITY OF TOKYO, JAPAN

STEPHEN P. JACKSON

WELLCOME/CRC INSTITUTE, CAMBRIDGE, UK

VICKI LUNDBLAD

BAYLOR COLLEGE OF MEDICINE, HOUSTON, TX, USA

WALTER NEUPERT

UNIVERSITY OF MUNICH, GERMANY

TONY PAWSON

SAMUEL LUNENFELD RESEARCH INSTITUTE, TORONTO, CANADA

NORBERT PERRIMON

HARVARD MEDICAL SCHOOL, BOSTON, MA, USA

THOMAS D. POLLARD

YALE UNIVERSITY, NEW HAVEN, CT. USA

JOHN C. REED

THE BURNHAM INSTITUTE, LA JOLLA, CA, USA

KAREN VOUSDEN

BEATSON INSTITUTE FOR CANCER RESEARCH, GLASGOW, UK

JOHN WALKER

MRC DUNN HUMAN NUTRITION UNIT, CAMBRIDGE, UK

AGEING

Absence makes the mouse live longer

So far, the only effective way for you to live longer has been to restrict your calorific intake. But a report by Holzenberger and colleagues in *Nature* might offer another potential way knocking out the insulin-like growth factor type 1 receptor (IGF1R) in mice increased their lifespan, indicating that IGF1R could be a crucial regulator of longevity in mammals.

Inactivating the fruitfly insulin-like receptor (*InR*) or the nematode *daf-2* gene, both of which encode components of the insulin or insulin-like signalling pathway, increases the lifespan of these organisms. In a bid to discover whether the IGF1R might control vertebrate longevity, the authors inactivated the *Igf1r* gene by homologous recombination; previous reports had hinted that decreased circulating IGF1 levels were correlated with longevity.

As homozygous-null mutants died at birth, subsequent studies focused on $Igf1r^{+/-}$ heterozygotes, which had half the amount of functional IGF1R protein. $Igf1r^{+/-}$ mice weighed the same as their wild-type counterparts at birth and for the first three weeks. There was a small decrease in the growth of $Igf1r^{+/-}$ mice, although this was only significant in male mice. Most apparent was that, on average, $Igf1r^{+/-}$ mice lived 26% longer than control mice — females lived 33% longer, whereas the increase in males was only 16%.

To discover what mediated this longevity, the authors studied various factors, from body temperature to circadian activity profiles, as metabolism might be important in ageing. No differences were found. Moreover, $Igf1r^{+/-}$ mice were as fertile as their control littermates. Both sets of mice also had the same food uptake, dismissing the possibility that the $Igf1r^{+/-}$ mice lived longer because they restricted their calorific intake.

So what might be responsible for the difference in longevity? Enhanced resistance to oxidative stress was a strong possibility, and it indeed turned out that $Igf1r^{+/-}$ mice, and mouse embryonic fibroblasts derived from them, were more resistant to oxidative stress than controls. At the molecular level, insulin receptor substrate 1 (IRS1) and the p52 and p66 isoforms of Shc, both main substrates

of IGF1R, showed decreased tyrosine phosphorylation. p66 Shc mediates cellular responses to oxidative stress, providing a putative mechanism linking IGF1R and oxidative stress. Further analysis showed that two main pathways - the extracelluregulated kinase lar-signal (ERK)/mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K)-Akt pathway - were downregulated in $Igf1r^{+/-}$ mice.

So this study has extended the initial findings from non-vertebrates to higher vertebrates — that insulin-like signalling and longevity are linked. Not only are further studies into the sex differences in lifespan needed, but future research needs to investigate potential links between calorific restriction, insulin-like signalling and oxidative stress in longevity.

Katrin Bussell

References and links ORIGINAL RESEARCH PAPER Holzenberger,

M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. *Nature* 2002 December 4 (DOI: 10.1038/nature01298) **FURTHER READING** Gems, D. & Partridge, L. Insulin/IGF signalling and ageing: seeing the bigger picture. *Curr. Opin. Genet. Dev.* **11**, 287–292 (2001)