Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is proteomics heading in the wrong direction?

Abstract

Proteomics is now considered to be one of the most important 'post-genome' approaches to help us understand gene function. In fact, several genomics companies have launched large-scale proteomics projects, and have started to annotate the entire human proteome. The 'holistic view' painted by a human proteome project is seductive, but is it realistic?

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Tandem-affinity purification.
Figure 2: Multidimensional protein identification technology.
Figure 3: Isotope-coded affinity tag methodology.

References

  1. Klose, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243 (1975).

    CAS  PubMed  Google Scholar 

  2. O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  3. Pasquali, C., Fialka, I. & Huber, L. A. Subcellular fractionation, electromigration analysis and mapping of organelles. J. Chromatogr. B Biomed. Sci. Appl. 722, 89–102 (1999).

    CAS  Article  PubMed  Google Scholar 

  4. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    CAS  Article  PubMed  Google Scholar 

  5. Gorg, A. et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053 (2000).

    CAS  Article  PubMed  Google Scholar 

  6. Santoni, V., Molloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070 (2000).

    CAS  Article  PubMed  Google Scholar 

  7. Pasquali, C., Fialka, I. & Huber, L. A. Preparative two-dimensional gel electrophoresis of membrane proteins. Electrophoresis 18, 2573–2581 (1997).

    CAS  Article  PubMed  Google Scholar 

  8. Stupka, E. Large-scale open bioinformatics data resources. Curr. Opin. Mol. Ther. 4, 265–274 (2002).

    CAS  PubMed  Google Scholar 

  9. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  Article  PubMed  Google Scholar 

  10. Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    CAS  Article  PubMed  Google Scholar 

  11. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  Article  Google Scholar 

  12. Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875 (2001).

    CAS  Article  PubMed  Google Scholar 

  13. Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291, 1289–1292 (2001).

    CAS  Article  PubMed  Google Scholar 

  14. Hill, A. A., Hunter, C. P., Tsung, B. T., Tucker-Kellogg, G. & Brown, E. L. Genomic analysis of gene expression in C. elegans. Science 290, 809–812 (2000).

    CAS  Article  PubMed  Google Scholar 

  15. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    CAS  Article  PubMed  Google Scholar 

  16. Celis, J. E. et al. Proteomic strategies to reveal tumor heterogeneity among urothelial papillomas. Mol. Cell Proteomics 1, 269–279 (2002).

    CAS  Article  PubMed  Google Scholar 

  17. Celis, J. E. Toward establishing a database of human protein information derived from the analysis of two-dimensional gels. Leukemia 1, 706 (1987).

    CAS  PubMed  Google Scholar 

  18. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Houry, W. A., Frishman, D., Eckerskorn, C., Lottspeich, F. & Hartl, F. U. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999).

    CAS  Article  PubMed  Google Scholar 

  20. Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002).

    Article  PubMed  Google Scholar 

  21. Garin, J. et al. The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    CAS  Article  PubMed  Google Scholar 

  23. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    CAS  Article  PubMed  Google Scholar 

  24. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    CAS  Article  PubMed  Google Scholar 

  25. Payne, W. E. & Garrels, J. I. Yeast Protein Database (YPD): a database for the complete proteome of Saccharomyces cerevisiae. Nucleic Acids Res. 25, 57–62 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Tong, A. H. et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2002).

    CAS  Article  PubMed  Google Scholar 

  27. Schwikowski, B., Uetz, P. & Fields, S. A network of protein–protein interactions in yeast. Nature Biotechnol. 18, 1257–1261 (2000).

    CAS  Article  Google Scholar 

  28. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    CAS  Article  PubMed  Google Scholar 

  29. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    CAS  Article  PubMed  Google Scholar 

  30. Wolters, D. A., Washburn, M. P. & Yates, J. R. 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).

    CAS  Article  PubMed  Google Scholar 

  31. Washburn, M. P., Wolters, D. & Yates, J. R. 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001).

    CAS  Article  Google Scholar 

  32. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).

    CAS  Article  Google Scholar 

  33. Skovgaard, M., Jensen, L. J., Brunak, S., Ussery, D. & Krogh, A. On the total number of genes and their length distribution in complete microbial genomes. Trends Genet. 17, 425–428 (2001).

    CAS  Article  PubMed  Google Scholar 

  34. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    CAS  Article  PubMed  Google Scholar 

  35. Reboul, J. et al. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nature Genet. 27, 332–336 (2001).

    CAS  Article  PubMed  Google Scholar 

  36. Cohen, J. The proteomics payoff. Technol. Rev. October, 55–60 (2001).

  37. Human Proteomics Initiative. ExPASy Molecular Biology Server [online], (June 2002) http://ca.expasy.org/sprot/hpi/hpi_desc.html (2002).

Download references

Acknowledgements

I would like to thank M. Glotzer for critically reading and discussing this manuscript with me. I would also like to thank Tommy Beck for helping with the web links.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Lukas Huber's laboratory

Isotope-Coded Affinity Tags (ICAT) Methodology — Flash Animation

PubMed

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huber, L. Is proteomics heading in the wrong direction?. Nat Rev Mol Cell Biol 4, 74–80 (2003). https://doi.org/10.1038/nrm1007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1007

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing