Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biochemical and cellular properties of insulin receptor signalling

Key Points

  • Formally started in 1971 with the discovery of the insulin receptor, the field of insulin signalling has by now resolved many questions related to the cellular, biochemical foundation of the hormone's biological effects.

  • The three major biochemical steps in insulin signalling are: tyrosine phosphorylation of the receptor and its direct substrates; activation of the lipid kinase, PI3K; and activation of multiple serine/threonine kinases, the most important of which is AKT.

  • Through various combinations of these signalling modules in different cell types, with different time and dose dependence after insulin binding, innumerable combinations of signalling complexes can be obtained. This diversity likely underpins the pleiotropism of insulin action, as well as the pathogenesis of insulin resistance.

  • Key recent discoveries in the field include the delineation of a pathway to insulin-dependent glucose transport, the emergence of two central pathways for regulation of gene expression, the interaction of insulin and leptin signalling in the CNS to facilitate energy homeostasis, and the role of inflammation as a regulator of insulin signalling.

Abstract

The mechanism of insulin action is a central theme in biology and medicine. In addition to the rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, genetic and acquired abnormalities of insulin action underlie the far more common conditions of type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular properties of insulin receptor signalling is arguably a priority in biomedical research. In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has led to a reassessment of the general principles of insulin action. These advances will accelerate the discovery of new treatment modalities for diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of the major discoveries in insulin signalling.
Figure 2: Activation of insulin signalling.
Figure 3: Modification of insulin signalling.
Figure 4: Temporal regulation of insulin signalling.
Figure 5: Spatial regulation of insulin signalling.

Similar content being viewed by others

References

  1. Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12, 141–146 (1922).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Levine, R., Goldstein, M. S., Huddlestun, B. & Klein, S. P. Action of insulin on the 'permeability' of cells to free hexoses, as studied by its effect on the distribution of galactose. Am. J. Physiol. 163, 70–76 (1950).

    Article  CAS  PubMed  Google Scholar 

  3. Freychet, P., Roth, J. & Neville, D. M. Jr. Insulin receptors in the liver: specific binding of (125 I)insulin to the plasma membrane and its relation to insulin bioactivity. Proc. Natl Acad. Sci. USA 68, 1833–1837 (1971).

    Article  CAS  PubMed  Google Scholar 

  4. Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M. & Kahn, C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298, 667–669 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Ebina, Y. et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40, 747–758 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Ullrich, A. et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756–761 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, X. J. et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Kohn, A. D., Kovacina, K. S. & Roth, R. A. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 14, 4288–4295 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gehart, H., Kumpf, S., Ittner, A. & Ricci, R. MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep. 11, 834–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, Y.-B., Nikoulina, S. E., Ciaraldi, T. P., Henry, R. R. & Kahn, B. B. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J. Clin. Invest. 104, 733–741 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nadler, S. T. et al. Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice. Am. J. Physiol. Endocrinol. Metab. 281, E1249–E1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Cleasby, M. E., Reinten, T. A., Cooney, G. J., James, D. E. & Kraegen, E. W. Functional studies of Akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate-1 expression. Mol. Endocrinol. 21, 215–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Hoehn, K. L. et al. IRS1-independent defects define major nodes of insulin resistance. Cell Metab. 7, 421–433 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, S. et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat. Cell Biol. 17, 44–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Odegaard, J. I. & Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339, 172–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ortega-Molina, A. et al. Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell Metab. 21, 558–570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Könner, A. C. & Brüning, Jens, C. Selective insulin and leptin resistance in metabolic disorders. Cell Metab. 16, 144–152

  20. Czech, M. P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017). This perspective highlights recent controversies and challenges in understanding the effects of obesity on insulin signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gavin, J. R. et al. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc. Natl Acad. Sci. USA 71, 84–88 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Backer, J. M., Kahn, C. R., Cahill, D. A., Ullrich, A. & White, M. F. Receptor-mediated internalization of insulin requires a 12-amino acid sequence in the juxtamembrane region of the insulin receptor β-subunit. J. Biol. Chem. 265, 16450–16454 (1990).

    CAS  PubMed  Google Scholar 

  23. Kolterman, O. G., Saekow, M. & Olefsky, J. M. The effects of acute and chronic starvation on insulin binding to isolated human adipocytes. J. Clin. Endocrinol. Metabolism 48, 836–842 (1979).

    Article  CAS  Google Scholar 

  24. Copps, K. D. & White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565–2582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shah, O. J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Harrington, L. S. et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Copps, K. D., Hançer, N. J., Qiu, W. & White, M. F. Serine 302 phosphorylation of mouse insulin receptor substrate 1 (IRS1) is dispensable for normal insulin signaling and feedback regulation by hepatic S6 kinase. J. Biol. Chem. 291, 8602–8617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Copps, K. D. et al. Irs1 Serine 307 promotes insulin sensitivity in mice. Cell. Metab. 11, 84–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petersen, M. C. et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361–4371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Samuel, Varman, T. & Shulman, Gerald, I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  Google Scholar 

  37. Samuel, V. T. et al. Inhibition of protein kinase Cɛ prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chaurasia, B. & Summers, S. A. Ceramides — lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Xia, J. Y., Morley, T. S. & Scherer, P. E. The adipokine/ceramide axis: key aspects of insulin sensitization. Biochimie 96, 130–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Lazar, D. F. & Saltiel, A. R. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat. Rev. Drug Discov. 5, 333–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Ogg, S. & Ruvkun, G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 2, 887–893 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13, 283–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Leslie, N. R. & Downes, C. P. PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382, 1–11 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Butler, M. et al. Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51, 1028–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Horie, Y. et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113, 1774–1783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl Acad. Sci. USA 101, 2082–2087 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Kurlawalla-Martinez, C. et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell. Biol. 25, 2498–2510 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morley, T. S., Xia, J. Y. & Scherer, P. E. Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nat. Commun. 6, 7906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wijesekara, N. et al. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell. Biol. 25, 1135–1145 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong, J. T. et al. Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity. Diabetologia 50, 395–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Pal, A. et al. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N. Engl. J. Med. 367, 1002–1011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishihara, H. et al. Molecular cloning of rat SH2-containing inositol phosphatase 2 (SHIP2) and its role in the regulation of insulin signaling. Biochem. Biophys. Res. Commun. 260, 265–272 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Sleeman, M. W. et al. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat. Med. 11, 199–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Clement, S. et al. Corrigendum: the lipid phosphatase SHIP2 controls insulin sensitivity. Nature 431, 878–878 (2004).

    Article  CAS  Google Scholar 

  56. Fukui, K. et al. Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5′-phosphatase 2) on insulin signaling and glucose metabolism in mice. Diabetes 54, 1958–1967 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Grempler, R. et al. Normalization of prandial blood glucose and improvement of glucose tolerance by liver-specific inhibition of SH2 domain containing inositol phosphatase 2 (SHIP2) in diabetic KKAy mice: SHIP2 inhibition causes insulin-mimetic effects on glycogen metabolism, gluconeogenesis, and glycolysis. Diabetes 56, 2235–2241 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Buettner, R. et al. Antisense oligonucleotides against the lipid phosphatase SHIP2 improve muscle insulin sensitivity in a dietary rat model of the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 292, E1871–E1878 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Suwa, A. et al. Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br. J. Pharmacol. 158, 879–887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson, T. O., Ermolieff, J. & Jirousek, M. R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov. 1, 696–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Ukkola, O. & Santaniemi, M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J. Internal Med. 251, 467–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Feldhammer, M., Uetani, N., Miranda-Saavedra, D. & Tremblay, M. L. PTP1B: a simple enzyme for a complex world. Crit. Rev. Biochem. Mol. Biol. 48, 430–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Klaman, L. D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bence, K. K. et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 12, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Banno, R. et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J. Clin. Invest. 120, 720–734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Delibegovic, M. et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58, 590–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Delibegovic, M. et al. Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol. Cell. Biol. 27, 7727–7734 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zinker, B. A. et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl Acad. Sci. USA 99, 11357–11362 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Brognard, J. & Newton, A. C. PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol. Metab. 19, 223–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Newton, A. C. & Trotman, L. C. Turning off AKT: PHLPP as a drug target. Annu. Rev. Pharmacol. Toxicol. 54, 537–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Brognard, J., Sierecki, E., Gao, T. & Newton, A. C. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell 25, 917–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Gao, T., Brognard, J. & Newton, A. C. The phosphatase PHLPP controls the cellular levels of protein kinase C. J. Biol. Chem. 283, 6300–6311 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, J., Stevens, P. D., Li, X., Schmidt, M. D. & Gao, T. PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth. Mol. Cell. Biol. 31, 4917–4927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, J., Stevens, P. D. & Gao, T. mTOR-dependent regulation of PHLPP expression controls the rapamycin sensitivity in cancer cells. J. Biol. Chem. 286, 6510–6520 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Li, X., Liu, J. & Gao, T. β-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt. Mol. Cell. Biol. 29, 6192–6205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ugi, S. et al. Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol. Cell. Biol. 24, 8778–8789 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gotz, J. & Schild, A. Transgenic and knockout models of PP2A. Methods Enzymol. 366, 390–403 (2003).

    Article  PubMed  Google Scholar 

  80. Rodgers, J. T., Vogel, R. O. & Puigserver, P. Clk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt. Mol. Cell 41, 471–479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xian, L. et al. Liver-specific deletion of Ppp2cα enhances glucose metabolism and insulin sensitivity. Aging 7, 223–232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Galbo, T. et al. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation. Aging 5, 770–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Desbuquois, B., Carre, N. & Burnol, A. F. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. FEBS J. 280, 794–816 (2013).

    CAS  PubMed  Google Scholar 

  84. Depetris, R. S. et al. Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Mol. Cell 20, 325–333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stein, E. G., Ghirlando, R. & Hubbard, S. R. Structural basis for dimerization of the Grb10 Src homology 2 domain. Implications for ligand specificity. J. Biol. Chem. 278, 13257–13264 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bereziat, V. et al. Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14. J. Biol. Chem. 277, 4845–4852 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Cooney, G. J. et al. Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO J. 23, 582–593 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, F. M. et al. Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol. Cell. Biol. 27, 5871–5886 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, L. et al. Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol. Cell. Biol. 27, 6497–6505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holt, L. J. et al. Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis. Mol. Endocrinol. 23, 1406–1414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sohani, Z. N. et al. Risk alleles in/near ADCY5, ADRA2A, CDKAL1, CDKN2A/B, GRB10, and TCF7L2 elevate plasma glucose levels at birth and in early childhood: results from the FAMILY study. PLoS ONE 11, e0152107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rampersaud, E. et al. Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: evidence for replication from diabetes-related quantitative traits and from independent populations. Diabetes 56, 3053–3062 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 10, e1004235 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Scott, R. A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kooner, J. S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Harder, M. N. et al. Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate with decreased β-cell function whereas risk alleles near ANKRD55 and GRB14 associate with decreased insulin sensitivity in the Danish Inter99 cohort. J. Clin. Endocrinol. Metabolism 98, E801–E806 (2013).

    Article  CAS  Google Scholar 

  100. Lu, Y. et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat. Commun. 7, 10495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heid, I. M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, C. T. et al. Genome-wide association of body fat distribution in African ancestry populations suggests new loci. PLoS Genet. 9, e1003681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, e1003500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Howard, J. K. & Flier, J. S. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol. Metab. 17, 365–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Jorgensen, S. B. et al. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity. Diabetes 62, 56–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Emanuelli, B., Macotela, Y., Boucher, J. & Ronald Kahn, C. SOCS-1 deficiency does not prevent diet-induced insulin resistance. Biochem. Biophys. Res. Commun. 377, 447–452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marine, J.-C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Rui, L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J. Diabetes 5, 511–526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Song, W. et al. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab. 11, 427–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Morris, D. L., Cho, K. W., Zhou, Y. & Rui, L. SH2B1 enhances insulin sensitivity by both stimulating the insulin receptor and inhibiting tyrosine dephosphorylation of insulin receptor substrate proteins. Diabetes 58, 2039–2047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bauer, F. et al. Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference. Am. J. Clin. Nutr. 90, 951–959 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Jamshidi, Y., Snieder, H., Ge, D., Spector, T. D. & O'Dell, S. D. The SH2B gene is associated with serum leptin and body fat in normal female twins. Obesity (Silver Spring) 15, 5–9 (2007).

    Article  CAS  Google Scholar 

  115. Renstrom, F. et al. Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum. Mol. Genet. 18, 1489–1496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Hotta, K. et al. Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography. J. Hum. Genet. 57, 305–310 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Bochukova, E. G. et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463, 666–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Walters, R. G. et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463, 671–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Prudente, S. et al. The SH2B1 obesity locus and abnormal glucose homeostasis: lack of evidence for association from a meta-analysis in individuals of European ancestry. Nutr. Metab. Cardiovasc. Dis. 23, 1043–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Belfiore, A. & Malaguarnera, R. The insulin receptor: a new target for cancer therapy. Front. Endocrinol. http://dx.doi.org/10.3389/fendo.2011.00093 (2011).

  123. Diaz-Castroverde, S. et al. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice. Dis. Model. Mech. 9, 1271–1281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Diaz-Castroverde, S. et al. Prevalent role of the insulin receptor isoform A in the regulation of hepatic glycogen metabolism in hepatocytes and in mice. Diabetologia 59, 2702–2710 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Moller, D. E., Yokota, A., Caro, J. F. & Flier, J. S. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol. Endocrinol. 3, 1263–1269 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Bjornholm, M. et al. Absence of functional insulin receptor substrate-3 (IRS-3) gene in humans. Diabetologia 45, 1697–1702 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Dong, X. C. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kubota, N. et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab. 8, 49–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Long, Y. C., Cheng, Z., Copps, K. D. & White, M. F. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol. Cell. Biol. 31, 430–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Laustsen, P. G. et al. Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol. Cell. Biol. 27, 1649–1664 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Dong, X. et al. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest. 116, 101–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Guo, S. et al. The Irs1 branch of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. Mol. Cell. Biol. 29, 5070–5083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kubota, N. et al. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat. Commun. 7, 12977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dummler, B. & Hemmings, B. A. Physiological roles of PKB/Akt isoforms in development and disease. Biochem. Soc. Trans. 35, 231 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Gonzalez, E. & McGraw, T. E. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Manning, B. D. & Toker, A. AKT/PKB Signaling: navigating the network. Cell 169, 381–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zheng, X. & Cartee, G. D. Insulin-induced effects on the subcellular localization of AKT1, AKT2 and AS160 in rat skeletal muscle. Sci. Rep. 6, 39230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gonzalez, E. & McGraw, T. E. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc. Natl Acad. Sci. USA 106, 7004–7009 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Osorio-Fuentealba, C. & Klip, A. Dissecting signalling by individual Akt/PKB isoforms, three steps at once. Biochem. J. 470, e13–e16 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Kajno, E., McGraw, T. E. & Gonzalez, E. Development of a new model system to dissect isoform specific Akt signalling in adipocytes. Biochem. J. 468, 425–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kubota, H. et al. Temporal coding of insulin action through multiplexing of the AKT pathway. Mol. Cell 46, 820–832 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Lefebvre, P. J., Paolisso, G., Scheen, A. J. & Henquin, J. C. Pulsatility of insulin and glucagon release: physiological significance and pharmacological implications. Diabetologia 30, 443–452 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, S. P. et al. Nocturnal free fatty acids are uniquely elevated in the longitudinal development of diet-induced insulin resistance and hyperinsulinemia. Am. J. Physiol. Endocrinol. Metab. 292, E1590–E1598 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, J. et al. Insulin inhibits transcription of IRS-2 gene in rat liver through an insulin response element (IRE) that resembles IREs of other insulin-repressed genes. Proc. Natl Acad. Sci. 98, 3756–3761 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Hirashima, Y. et al. Insulin down-regulates insulin receptor substrate-2 expression through the phosphatidylinositol 3-kinase/Akt pathway. J. Endocrinol. 179, 253–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Ide, T. et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat. Cell Biol. 6, 351–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Hanke, S. & Mann, M. The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol. Cell Proteomics 8, 519–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vinayagam, A. et al. An integrative analysis of the InR/PI3K/Akt network identifies the dynamic response to insulin signaling. Cell Rep. 16, 3062–3074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schmelzle, K., Kane, S., Gridley, S., Lienhard, G. E. & White, F. M. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55, 2171–2179 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Kruger, M. et al. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl Acad. Sci. USA 105, 2451–2456 (2008).

    Article  PubMed  Google Scholar 

  153. Humphrey, S. J. et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 17, 1009–1020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995 (2015). References 153 and 154 used mass spectrometry to identify the protein residues that are phosphorylated in response to insulin, as well as the timing of these phosphorylation events.

    Article  CAS  PubMed  Google Scholar 

  155. Lauro, D. et al. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat. Genet. 20, 294–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Cushman, S. W. & Wardzala, L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762 (1980).

    CAS  PubMed  Google Scholar 

  157. Suzuki, K. & Kono, T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl Acad. Sci. USA 77, 2542–2545 (1980).

    Article  CAS  PubMed  Google Scholar 

  158. Foley, K., Boguslavsky, S. & Klip, A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 50, 3048–3061 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Huang, S. & Czech, M. P. The GLUT4 glucose transporter. Cell Metab. 5, 237–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Klip, A., Sun, Y., Chiu, T. T. & Foley, K. P. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J. Cell Physiol. 306, C879–C886 (2014).

    Article  CAS  Google Scholar 

  161. Leto, D. & Saltiel, A. R. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 13, 383–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Eguez, L. et al. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab. 2, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Miinea, C. P. et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem. J. 391, 87–93 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sano, H. et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem. 278, 14599–14602 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Ramm, G., Larance, M., Guilhaus, M. & James, D. E. A role for 14-3-3 in insulin-stimulated GLUT4 translocation through its interaction with the RabGAP AS160. J. Biol. Chem. 281, 29174–29180 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Ishikura, S., Bilan, P. J. & Klip, A. Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem. Biophys. Res. Commun. 353, 1074–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Sano, H. et al. Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab. 5, 293–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Vazirani, R. P. et al. Disruption of adipose Rab10-dependent insulin signaling causes hepatic insulin resistance. Diabetes 65, 1577–1589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bruno, J., Brumfield, A., Chaudhary, N., Iaea, D. & McGraw, T. E. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. J. Cell Biol. 214, 61–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Uhm, M. et al. Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking. Sci. Signal. 10, eaah5085 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9–19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R. A. & Accili, D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6, 208–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Nakae, J., Kitamura, T., Silver, D. L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359–1367 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Haeusler, R. A. et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat. Commun. 5, 5190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nakae, J. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Plum, L. et al. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat. Med. 15, 1195–1201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kitamura, T. et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J. Clin. Invest. 110, 1839–1847 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kitamura, Y. I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Flier, J. S. & Hollenberg, A. N. ADD-1 provides major new insight into the mechanism of insulin action. Proc. Natl Acad. Sci. USA 96, 14191–14192 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Owen, J. L. et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc. Natl Acad. Sci. USA 109, 16184–16189 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Chen, G., Liang, G., Ou, J., Goldstein, J. L. & Brown, M. S. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl Acad. Sci. USA 101, 11245–11250 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Hegarty, B. D. et al. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element binding protein-1c. Proc. Natl Acad. Sci. USA 102, 791–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Kim, J. B. et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest. 101, 1–9 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 3441–3446 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Nakae, J., Park, B. C. & Accili, D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Biggs, W. H. III., Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7426 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Haas, J. T. et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15, 873–884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shimomura, I. et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell 6, 77–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Waters, K. M. & Ntambi, J. M. Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J. Biol. Chem. 269, 27773–27777 (1994).

    CAS  PubMed  Google Scholar 

  193. Paulauskis, J. D. & Sul, H. S. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264, 574–577 (1989).

    CAS  PubMed  Google Scholar 

  194. Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Han, J. et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 524, 243–246 (2015). References 194 and 195 offered two mechanisms to explain the post-translational activation of SREBP1c by insulin, a phenomenon that had previously been poorly understood.

    Article  CAS  PubMed  Google Scholar 

  196. Jensen, M. & De Meyts, P. Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitam. Horm. 80, 51–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Bergeron, J. J., Di Guglielmo, G. M., Dahan, S., Dominguez, M. & Posner, B. I. Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu. Rev. Biochem. 85, 573–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Nakae, J., Kido, Y. & Accili, D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. 22, 818–835 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. Schmidt, V. et al. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity. J. Clin. Invest. 126, 2706–2720 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Smith, E. N. et al. Longitudinal genome-wide association of cardiovascular disease risk factors in the Bogalusa heart study. PLoS Genet. 6, e1001094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Parks, Brian, W. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 17, 141–152 (2013).

    Article  CAS  Google Scholar 

  202. Lampson, M. A., Racz, A., Cushman, S. W. & McGraw, T. E. Demonstration of insulin-responsive trafficking of GLUT4 and vpTR in fibroblasts. J. Cell Sci. 113, 4065–4076 (2000).

    CAS  PubMed  Google Scholar 

  203. Ross, S. A., Herbst, J. J., Keller, S. R. & Lienhard, G. E. Trafficking kinetics of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 239, 247–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  204. Keller, S. R., Davis, A. C. & Clairmont, K. B. Mice deficient in the insulin-regulated membrane aminopeptidase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis. J. Biol. Chem. 277, 17677–17686 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Dentin, R. et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Ozcan, L. et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 15, 739–751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kawamori, D. et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 281, 1091–1098 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Martinez, S. C. et al. Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 57, 846–859 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Frescas, D., Valenti, L. & Accili, D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280, 20589–20595 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Qiang, L., Banks, A. S. & Accili, D. Uncoupling of acetylation from phosphorylation regulates FOXO1 function independent of its sub-cellular localization. J. Biol. Chem. 285, 27396–27401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Banks, A. S. et al. Dissociation of the glucose and lipid regulatory functions of FoxO1 by targeted knockin of acetylation-defective alleles in mice. Cell Metab. 14, 587–597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tsuchiya, K. et al. Homozygosity for an allele encoding deacetylated FoxO1 protects macrophages from cholesterol-induced inflammation without increasing apoptosis. Arterioscler. Thromb. Vasc. Biol. 31, 2920–2928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Qiang, L. et al. Increased atherosclerosis and endothelial dysfunction in mice bearing constitutively deacetylated alleles of Foxo1 gene. J. Biol. Chem. 287, 13944–13951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Betz, C. & Hall, M. N. Where is mTOR and what is it doing there? J. Cell Biol. 203, 563–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Inoki, K., Li, Y., Xu, T. & Guan, K.-L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  220. Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014). This article demonstrated that insulin regulates mTORC1 activity by controlling the spatial distribution of the TSC complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Rutter, G. A. & Pinton, P. Mitochondria-associated endoplasmic reticulum membranes in insulin signaling. Diabetes 63, 3163–3165 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Betz, C. et al. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl Acad. Sci. 110, 12526–12534 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279–3294 (2014).

    Article  CAS  PubMed  Google Scholar 

  226. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  227. Sebastian, D. et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl Acad. Sci. USA 109, 5523–5528 (2012).

    Article  CAS  PubMed  Google Scholar 

  228. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hijmans, B. S., Grefhorst, A., Oosterveer, M. H. & Groen, A. K. Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie 96, 121–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. Lee, W. L. & Klip, A. Endothelial transcytosis of insulin: does it contribute to insulin resistance? Physiology (Bethesda) 31, 336–345 (2016).

    CAS  Google Scholar 

  231. Rask-Madsen, C. & Kahn, C. R. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 32, 2052–2059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. King, G. & Johnson, S. Receptor-mediated transport of insulin across endothelial cells. Science 227, 1583–1586 (1985).

    Article  CAS  PubMed  Google Scholar 

  233. Wang, H., Liu, Z., Li, G. & Barrett, E. J. The vascular endothelial cell mediates insulin transport into skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 291, E323–E332 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. Vicent, D. et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J. Clin. Invest. 111, 1373–1380 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kubota, T. et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 13, 294–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  236. Tsuchiya, K. & Accili, D. Liver sinusoidal endothelial cells link hyperinsulinemia to hepatic insulin resistance. Diabetes 62, 1478–1489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pajvani, U. B. et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat. Med. 17, 961–967 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Pajvani, U. B. et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat. Med. (2013).

  239. Bi, P. & Kuang, S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol. Metab. 26, 248–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Titchenell, P. M., Lazar, M. A. & Birnbaum, M. J. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol. Metab. (2017).

  241. Mueckler, M. Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes 39, 6–11 (1990).

    Article  CAS  PubMed  Google Scholar 

  242. Thorens, B., Charron, M. J. & Lodish, H. F. Molecular physiology of glucose transporters. Diabetes Care 13, 209–218 (1990).

    Article  CAS  PubMed  Google Scholar 

  243. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  244. Scott, P. H., Brunn, G. J., Kohn, A. D., Roth, R. A. & Lawrence, J. C. Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA 95, 7772–7777 (1998).

    Article  CAS  PubMed  Google Scholar 

  245. Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12, 534–540 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank U. Pajvani and R. Leibel for stimulating discussions and helpful comments. Supported by NIH grants DK57539, DK64819, DK58282, HL81723, DK52852 and HL125649.

Author information

Authors and Affiliations

Authors

Contributions

R.A.H., T.E.M. and D.A. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Domenico Accili.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Anorexigenic

Appetite-suppressant.

Paracrine

A mechanism by which neighbouring cells influence each other by way of a secreted factor.

Diacylglycerol

A glycerol molecule with two fatty acid chains present in food or produced primarily in the liver, adipose tissue and intestine, diacylglycerol is best known for its signalling properties to activate protein kinase C but also functions as a precursor molecule in the synthesis of triglycerides and prostaglandins.

Haploinsufficiency

A phenotype caused by a heterozygous loss-of-function mutation, or by a mutation partly affecting levels and/or activity of a gene product.

Post-absorptive state

The state following food absorption by the gut, hence the fasting state.

RABGAP

A protein activating the GTPase activity of RAB, a component of secretory vesicles involved in intracellular transport.

Exocyst

An octamer assembled to promote intracellular vesicle transport.

COPII complex

A complex of proteins assembled around coat protein II (COPII), required for anterograde transport from the endoplasmic reticulum to the Golgi.

Transcytocis

The transport of proteins across the interior of a cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeusler, R., McGraw, T. & Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19, 31–44 (2018). https://doi.org/10.1038/nrm.2017.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing