Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytosolic lipolysis and lipophagy: two sides of the same coin

Key Points

  • This Review focuses on the pathways that catabolize cellular triacylglycerol ('fat'), namely, neutral lipolysis, acid lipolysis and lipophagy.

  • Neutral lipolysis of triglycerides in cytosolic lipid droplets relies on three lipid hydrolases (lipases): adipose triglyceride lipase, hormone-sensitive lipase and monoacylglycerol lipase. The consecutive action of these enzymes provides free fatty acids and glycerol for energy production and other metabolic pathways during fasting. The regulation of neutral lipolysis is complex and involves numerous proteins, hormones, growth factors and cytokines. Conversely, products and intermediates of neutral lipolysis regulate key metabolic pathways by transcriptional and post-transcriptional mechanisms.

  • Lipophagy is a subtype of macroautophagy. Portions of cytosolic lipid droplets are engulfed by lipoautophagosomes and transported to lysosomes, where triacylglycerols and other lipids undergo acid lipolysis by lysosomal acid lipase.

  • The regulation of acid lipolysis is less complex than the regulation of neutral lipolysis, but again, the products and intermediates of triacylglycerol hydrolysis exit lysosomes and regulate multiple key processes in energy metabolism.

  • Neutral lipolysis, acid lipolysis and lipophagy cooperate mechanistically.

  • Rare mutations in the genes coding for adipose triglyceride lipase; its co-activator, lipid droplet-binding protein CGI-58; hormone-sensitive lipase; and lysosomal acid lipase cause distinct metabolic disorders in humans.

  • Recent insights led to a better understanding of how cellular triacylglycerol catabolism affects the pathogenesis of metabolic diseases, cancer and cancer-associated cachexia and highlighted potential treatment strategies for lipid-associated disorders.

Abstract

Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the enzymes involved in lipolysis and the potential functions of their enzymatic products.
Figure 2: Direct and indirect regulation of the lipases involved in neutral and acid lipolysis.
Figure 3: Common regulation of neutral lipolysis and lipophagy.
Figure 4: Autophagy, lipophagy, lipolysis and their crosstalk.

Similar content being viewed by others

References

  1. Unger, R. H. Lipotoxic diseases. Annu. Rev. Med. 53, 319–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Armand, M. Lipases and lipolysis in the human digestive tract: where do we stand? Curr. Opin. Clin. Nutr. Metab. Care 10, 156–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Young, S. G. & Zechner, R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 27, 459–484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zechner, R. FAT FLUX: enzymes, regulators, and pathophysiology of intracellular lipolysis. EMBO Mol. Med. 7, 359–362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dubland, J. A. & Francis, G. A. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front. Cell Dev. Biol. 3, 3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Villena, J. A., Roy, S., Sarkadi-Nagy, E., Kim, K. H. & Sul, H. S. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 279, 47066–47075 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Jenkins, C. M. et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Vaughan, M., Berger, J. E. & Steinberg, D. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239, 401–409 (1964).

    CAS  PubMed  Google Scholar 

  12. Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3, 309–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X. et al. The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11, 194–205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radner, F. P. et al. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J. Biol. Chem. 285, 7300–7311 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Grond, S. et al. Skin barrier development depends on CGI-58 protein expression during late-stage keratinocyte differentiation. J. Invest. Dermatol. 137, 403–413 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Grond, S. et al. PNPLA1 deficiency in mice and humans leads to a defect in the synthesis of omega-O-Acylceramides. J. Invest. Dermatol. 137, 394–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279, 11767–11776 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Russell, L. & Forsdyke, D. R. A human putative lymphocyte G0/G1 switch gene containing a CpG-rich island encodes a small basic protein with the potential to be phosphorylated. DNA Cell Biol. 10, 581–591 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Cerk, I. K. et al. A peptide derived from G0/G1 switch gene 2 acts as noncompetitive inhibitor of adipose triglyceride lipase. J. Biol. Chem. 289, 32559–32570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, X., Yang, X. & Liu, J. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle 9, 2719–2725 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heckmann, B. L. et al. Defective adipose lipolysis and altered global energy metabolism in mice with adipose overexpression of the lipolytic inhibitor G0/G1 switch gene 2 (G0S2). J. Biol. Chem. 289, 1905–1916 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. Targeted disruption of G0/G1 switch gene 2 enhances adipose lipolysis, alters hepatic energy balance, and alleviates high-fat diet-induced liver steatosis. Diabetes 63, 934–946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y. et al. The G0/G1 switch gene 2 is an important regulator of hepatic triglyceride metabolism. PLoS ONE 8, e72315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heier, C. et al. G0/G1 switch gene 2 regulates cardiac lipolysis. J. Biol. Chem. 290, 26141–26150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hofer, P. et al. Fatty acid-binding proteins interact with comparative gene identification-58 linking lipolysis with lipid ligand shuttling. J. Biol. Chem. 290, 18438–18453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Notari, L. et al. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J. Biol. Chem. 281, 38022–38037 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Chung, C. et al. Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase (ATGL). J. Hepatol. 48, 471–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Borg, M. L. et al. Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase. Diabetes 60, 1458–1466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh, M. et al. Fat-specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of transcription factor Egr1 on transcription of adipose triglyceride lipase. J. Biol. Chem. 289, 14481–14487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grahn, T. H. et al. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J. Biol. Chem. 289, 12029–12039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eichmann, T. O. et al. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J. Biol. Chem. 287, 41446–41457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez, J. A. et al. In vitro stereoselective hydrolysis of diacylglycerols by hormone-sensitive lipase. Biochim. Biophys. Acta 1801, 77–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Lafontan, M. & Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48, 275–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Fischer, J. et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat. Genet. 39, 28–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Osuga, J. et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl Acad. Sci. USA 97, 787–792 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albert, J. S. et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N. Engl. J. Med. 370, 2307–2315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petrosino, S. & Di Marzo, V. FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr. Opin. Investig. Drugs 11, 51–62 (2010).

    CAS  PubMed  Google Scholar 

  38. Subramanian, V. et al. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J. Biol. Chem. 279, 42062–42071 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Granneman, J. G. & Moore, H. P. Location, location: protein trafficking and lipolysis in adipocytes. Trends Endocrinol. Metab. 19, 3–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Watt, M. J. & Steinberg, G. R. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J. 414, 313–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Collins, S. A heart-adipose tissue connection in the regulation of energy metabolism. Nat. Rev. Endocrinol. 10, 157–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kaltenecker, D. et al. Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice. Diabetologia 60, 296–330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saltiel, A. R. Insulin signaling in the control of glucose and lipid homeostasis. Handb Exp. Pharmacol. 233, 51–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. DiPilato, L. M. et al. The role of PDE3B phosphorylation in the inhibition of lipolysis by insulin. Mol. Cell. Biol. 35, 2752–2760 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chakrabarti, P. & Kandror, K. V. FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes. J. Biol. Chem. 284, 13296–13300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chakrabarti, P. et al. SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J. Lipid Res. 52, 1693–1701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lasa, A. et al. Resveratrol regulates lipolysis via adipose triglyceride lipase. J. Nutr. Biochem. 23, 379–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Lamming, D. W. & Sabatini, D. M. A. Central role for mTOR in lipid homeostasis. Cell Metab. 18, 465–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Ceddia, R. B. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol. Cell Endocrinol. 366, 194–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Chakrabarti, P., English, T., Shi, J., Smas, C. M. & Kandror, K. V. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59, 775–781 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chakrabarti, P. et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol. Cell. Biol. 33, 3659–3666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar, A. et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59, 1397–1406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gaidhu, M. P. et al. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. J. Lipid Res. 50, 704–715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, S. J. et al. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol. Cell. Biol. 36, 1961–1976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Watt, M. J. et al. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290, E500–E508 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739–748 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pagnon, J. et al. Identification and functional characterization of protein kinase A phosphorylation sites in the major lipolytic protein, adipose triglyceride lipase. Endocrinology 153, 4278–4289 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Karlsson, M. et al. Exon-intron organization and chromosomal localization of the mouse monoglyceride lipase gene. Gene 272, 11–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Rakhshandehroo, M. et al. Comprehensive analysis of PPARα-dependent regulation of hepatic lipid metabolism by expression profiling. PPAR Res. 2007, 26839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haemmerle, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 17, 1076–1085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zierler, K. A. et al. Functional cardiac lipolysis in mice critically depends on comparative gene identification-58. J. Biol. Chem. 288, 9892–9904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schoiswohl, G. et al. Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids. J. Lipid Res. 51, 490–499 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, J. W. et al. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 54, 122–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Ong, K. T., Mashek, M. T., Bu, S. Y., Greenberg, A. S. & Mashek, D. G. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53, 116–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Obrowsky, S. et al. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J. Lipid Res. 54, 425–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chandak, P. G. et al. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase. J. Biol. Chem. 285, 20192–20201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mottillo, E. P., Bloch, A. E., Leff, T. & Granneman, J. G. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J. Biol. Chem. 287, 25038–25048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schoiswohl, G. et al. Impact of reduced ATGL-mediated adipocyte lipolysis on obesity-associated insulin resistance and inflammation in male mice. Endocrinology 156, 3610–3624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jaeger, D. et al. Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids. J. Hepatol. 63, 437–445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang, T. et al. Desnutrin/ATGL activates PPARδ to promote mitochondrial function for insulin secretion in islet beta cells. Cell Metab. 18, 883–895 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Schreiber, R. et al. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. Proc. Natl Acad. Sci. USA 112, 13850–13855 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haemmerle, G. et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277, 4806–4815 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Armstrong, E. H., Goswami, D., Griffin, P. R., Noy, N. & Ortlund, E. A. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor beta/delta (FABP5-PPARβ/δ) signaling pathway. J. Biol. Chem. 289, 14941–14954 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tan, N. S. et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol. Cell. Biol. 22, 5114–5127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wolfrum, C., Borrmann, C. M., Borchers, T. & Spener, F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and γ-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc. Natl Acad. Sci. USA 98, 2323–2328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen, W. J., Sridhar, K., Bernlohr, D. A. & Kraemer, F. B. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc. Natl Acad. Sci. USA 96, 5528–5532 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith, A. J. et al. Physical association between the adipocyte fatty acid-binding protein and hormone-sensitive lipase: a fluorescence resonance energy transfer analysis. J. Biol. Chem. 279, 52399–52405 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Khan, S. A. et al. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1γ/PPAR-α signaling. Diabetes 64, 418–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ng, F. & Tang, B. L. Sirtuins' modulation of autophagy. J. Cell. Physiol. 228, 2262–2270 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Lettieri Barbato, D., Tatulli, G., Aquilano, K. & Ciriolo, M. R. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 4, e861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wagner, G. R. & Payne, R. M. Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–29045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weinert, B. T. et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10, 716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weinert, B. T., Moustafa, T., Iesmantavicius, V., Zechner, R. & Choudhary, C. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. 34, 2620–2632 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eisenberg, T. et al. Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab. 19, 431–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marino, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Pougovkina, O. et al. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 23, 3513–3522 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Hebert, A. S. et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sheriff, S., Du, H. & Grabowski, G. A. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression. J. Biol. Chem. 270, 27766–27772 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Warner, T. G., Dambach, L. M., Shin, J. H. & O'Brien, J. S. Purification of the lysosomal acid lipase from human liver and its role in lysosomal lipid hydrolysis. J. Biol. Chem. 256, 2952–2957 (1981).

    CAS  PubMed  Google Scholar 

  93. Grumet, L. et al. Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover. J. Biol. Chem. 291, 17977–17987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sando, G. N. & Henke, V. L. Recognition and receptor-mediated endocytosis of the lysosomal acid lipase secreted by cultured human fibroblasts. J. Lipid Res. 23, 114–123 (1982).

    CAS  PubMed  Google Scholar 

  95. Haka, A. S. et al. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol. Biol. Cell 20, 4932–4940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dieckmann, M., Dietrich, M. F. & Herz, J. Lipoprotein receptors—an evolutionarily ancient multifunctional receptor family. Biol. Chem. 391, 1341–1363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Du, H., Duanmu, M., Witte, D. & Grabowski, G. A. Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. Hum. Mol. Genet. 7, 1347–1354 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Du, H. et al. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J. Lipid Res. 42, 489–500 (2001).

    CAS  PubMed  Google Scholar 

  100. Radovic, B. et al. Lysosomal acid lipase regulates VLDL synthesis and insulin sensitivity in mice. Diabetologia 59, 1743–1752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martina, J. A. et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal 7, ra9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Raben, N. & Puertollano, R. TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu. Rev. Cell Dev. Biol. 32, 255–278 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. O'Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Emanuel, R. et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler. Thromb. Vasc. Biol. 34, 1942–1952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cox, B. E., Griffin, E. E., Ullery, J. C. & Jerome, W. G. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J. Lipid Res. 48, 1012–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Li, W., Yuan, X. M., Olsson, A. G. & Brunk, U. T. Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation. Arterioscler Thromb. Vasc. Biol. 18, 177–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Griffin, E. E., Ullery, J. C., Cox, B. E. & Jerome, W. G. Aggregated LDL and lipid dispersions induce lysosomal cholesteryl ester accumulation in macrophage foam cells. J. Lipid Res. 46, 2052–2060 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Bowden, K. L. et al. Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease. J. Biol. Chem. 286, 30624–30635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ikonen, E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Li, J. & Pfeffer, S. R. Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export. eLife 5, e21635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, F. W., Gordon, R. E. & Ioannou, Y. A. NPC1 late endosomes contain elevated levels of non-esterified ('free') fatty acids and an abnormally glycosylated form of the NPC2 protein. Biochem. J. 390, 549–561 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Passeggio, J. & Liscum, L. Flux of fatty acids through NPC1 lysosomes. J. Biol. Chem. 280, 10333–10339 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Lee, S. D. & Tontonoz, P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 242, 29–36 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Folick, A. et al. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83–86 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Feng, Y., Yao, Z. & Klionsky, D. J. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 25, 354–363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, J. M. et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112–115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ao, X., Zou, L. & Wu, Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 21, 348–358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schroeder, B. et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896–1907 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Saftig, P., Beertsen, W. & Eskelinen, E. L. LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4, 510–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Mijaljica, D., Prescott, M. & Devenish, R. J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Cingolani, F. & Czaja, M. J. Regulation and functions of autophagic lipolysis. Trends Endocrinol. Metab. 27, 696–705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shibata, M. et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Conlon, D. M. et al. Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis. J. Clin. Invest. 126, 3852–3867 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kwanten, W. J. et al. Hepatocellular autophagy modulates the unfolded protein response and fasting-induced steatosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G599–G609 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mao, Y. et al. Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor-κB inhibition. Cell Physiol. Biochem. 37, 563–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, Y., Singh, R., Xiang, Y. & Czaja, M. J. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology 52, 266–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Papackova, Z., Dankova, H., Palenickova, E., Kazdova, L. & Cahova, M. Effect of short- and long-term high-fat feeding on autophagy flux and lysosomal activity in rat liver. Physiol. Res. 61 (Suppl. 2), S67–S76 (2012).

    CAS  PubMed  Google Scholar 

  135. Ma, D. et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol. Endocrinol. 27, 1643–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shibata, M. et al. LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem. Biophys. Res. Commun. 393, 274–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Baerga, R., Zhang, Y., Chen, P. H., Goldman, S. & Jin, S. Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5, 1118–1130 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860–19865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Guo, L. et al. Transactivation of Atg4b by C/EBPbeta promotes autophagy to facilitate adipogenesis. Mol. Cell. Biol. 33, 3180–3190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Takagi, A. et al. Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Sci. Rep. 6, 18944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Martinez-Lopez, N., Athonvarangkul, D., Mishall, P., Sahu, S. & Singh, R. Autophagy proteins regulate ERK phosphorylation. Nat. Commun. 4, 2799 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Martinez-Lopez, N. et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab. 23, 113–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Peng, Y. et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy 12, 2167–2182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678–692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fabbrini, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Samuel, V. T. & Shulman, G. I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126, 12–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ginsberg, H. N. & Reyes-Soffer, G. Niacin: a long history, but a questionable future. Curr. Opin. Lipidol 24, 475–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9, 352–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Lauring, B. et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci. Transl. Med. 4, 148ra115 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Ganji, S. H. et al. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J. Lipid Res. 45, 1835–1845 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Claus, T. H. et al. Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. J. Pharmacol. Exp. Ther. 315, 1396–1402 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Ebdrup, S., Refsgaard, H. H., Fledelius, C. & Jacobsen, P. Synthesis and structure-activity relationship for a novel class of potent and selective carbamate-based inhibitors of hormone selective lipase with acute in vivo antilipolytic effects. J. Med. Chem. 50, 5449–5456 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Girousse, A. et al. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol. 11, e1001485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mayer, N. et al. Development of small-molecule inhibitors targeting adipose triglyceride lipase. Nat. Chem. Biol. 9, 785–787 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Schweiger, M. et al. Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nat. Commun. 8, 14859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lammers, B. et al. Macrophage adipose triglyceride lipase deficiency attenuates atherosclerotic lesion development in low-density lipoprotein receptor knockout mice. Arterioscler Thromb. Vasc. Biol. 31, 67–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Agustsson, T. et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 67, 5531–5537 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Ryden, M. et al. Lipolysis—not inflammation, cell death, or lipogenesis—is involved in adipose tissue loss in cancer cachexia. Cancer 113, 1695–1704 (2008).

    Article  PubMed  Google Scholar 

  163. Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Massa, R. et al. Neutral lipid-storage disease with myopathy and extended phenotype with novel PNPLA2 mutation. Muscle Nerve 53, 644–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Natali, A. et al. Metabolic consequences of adipose triglyceride lipase deficiency in humans: an in vivo study in patients with neutral lipid storage disease with myopathy. J. Clin. Endocrinol. Metab. 98, E1540–E1548 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Dorfman, M. L., Hershko, C., Eisenberg, S. & Sagher, F. Ichthyosiform dermatosis with systemic lipidosis. Arch. Dermatol. 110, 261–266 (1974).

    Article  CAS  PubMed  Google Scholar 

  167. Chanarin, I. et al. Neutral-lipid storage disease: a new disorder of lipid metabolism. Br. Med. J. 1, 553–555 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lefevre, C. et al. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am. J. Hum. Genet. 69, 1002–1012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Uchida, Y. et al. Neutral lipid storage leads to acylceramide deficiency, likely contributing to the pathogenesis of Dorfman-Chanarin syndrome. J. Invest. Dermatol. 130, 2497–2499 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Zhang, J. et al. Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase. J. Biol. Chem. 289, 33044–33053 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ghosh, A. K., Ramakrishnan, G., Chandramohan, C. & Rajasekharan, R. CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J. Biol. Chem. 283, 24525–24533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Farhan, S. M. et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can. J. Cardiol. 30, 1649–1654 (2014).

    Article  PubMed  Google Scholar 

  173. Wang, S. P. et al. The catalytic function of hormone-sensitive lipase is essential for fertility in male mice. Endocrinology 155, 3047–3053 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Abramov, A., Schorr, S. & Wolman, M. Generalized xanthomatosis with calcified adrenals. AMA J. Dis. Child 91, 282–286 (1956).

    CAS  PubMed  Google Scholar 

  175. Sloan, H. R. & Fredrickson, D. S. Enzyme deficiency in cholesteryl ester storage disease. J. Clin. Invest. 51, 1923–1926 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Burke, J. A. & Schubert, W. K. Deficient activity of acid lipase in cholesterol-ester storage disease. J. Lab Clin. Med. 78, 988–989 (1971).

    CAS  PubMed  Google Scholar 

  177. Patrick, A. D. & Lake, B. D. Deficiency of an acid lipase in Wolman's disease. Nature 222, 1067–1068 (1969).

    Article  CAS  PubMed  Google Scholar 

  178. Bernstein, D. L., Hulkova, H., Bialer, M. G. & Desnick, R. J. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J. Hepatol. 58, 1230–1243 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Hoffman, E. P., Barr, M. L., Giovanni, M. A. & Murray, M. F. Lysosomal Acid Lipase Deficiency (eds Pagon, R. A. et al.) (University of Washington, 2016).

    Google Scholar 

  180. Burton, B. K. et al. A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. N. Engl. J. Med. 373, 1010–1020 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang, J. et al. Monoacylglycerol lipase: A novel potential therapeutic target and prognostic indicator for hepatocellular carcinoma. Sci. Rep. 6, 35784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nomura, D. K. et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem. Biol. 18, 846–856 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Al-Zoughbi, W. et al. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia. Oncotarget 7, 33832–33840 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Zhou, X. et al. Epigenetic downregulation of the ISG15-conjugating enzyme UbcH8 impairs lipolysis and correlates with poor prognosis in nasopharyngeal carcinoma. Oncotarget 6, 41077–41091 (2015).

    PubMed  PubMed Central  Google Scholar 

  186. Wu, J. W. et al. Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice. PLoS Genet. 13, e1006716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Miao, H. et al. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat. Commun. 7, 11716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ou, J. et al. Loss of abhd5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition. Cell Rep. 9, 1798–1811 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yan, C., Zhao, T. & Du, H. Lysosomal acid lipase in cancer. Oncoscience 2, 727–728 (2015).

    PubMed  PubMed Central  Google Scholar 

  190. Zhao, T., Du, H., Ding, X., Walls, K. & Yan, C. Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal−/− mice. Oncogene 34, 1938–1948 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Du, H., Zhao, T., Ding, X. & Yan, C. Hepatocyte-specific expression of human lysosome acid lipase corrects liver inflammation and tumor metastasis in lal−/− mice. Am. J. Pathol. 185, 2379–2389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhao, T., Ding, X., Du, H. & Yan, C. Lung epithelial cell-specific expression of human lysosomal acid lipase ameliorates lung inflammation and tumor metastasis in lipa−/− mice. Am. J. Pathol. 186, 2183–2192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the European Research Council ERC Grant Agreement 340896, LipoCheX (R.Z.), the DKs Molecular Enzymology (W901) (R.Z.) and Metabolic and Cardiovascular Disease (W1226) (F.M., D.K.), the SFB Lipotox (F30) funded by the Austrian Science Fund (FWF) (R.Z., F.M., D.K.), the Louis-Jeantet Foundation (R.Z.), the Fondation Leducq (grant 12CVD04) (R.Z.) and the BioTechMed-Graz flagship projects EPIAge (F.M.) and Lipid Signalling (D.K.). F.M. acknowledges additional support from NAWI Graz; BioTechMed-Graz (“EPIAge”); FWF grants P29262, P29203 and P27893; and the BMWFW and University of Graz grants “Unkonventionelle Forschung” and “Flysleep”.

Author information

Authors and Affiliations

Authors

Contributions

Researching the literature for the article: R.Z., F.M. and D.K.; substantial contributions to discussion of the content: R.Z., F.M. and D.K.; writing: R.Z. and D.K.; review and/or editing of the manuscript before submission: R.Z., F.M. and D.K.

Corresponding author

Correspondence to Rudolf Zechner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fatty acids

Monocarboxylic acids with long saturated or unsaturated aliphatic carbon chains. They are either unesterified, in free form (free fatty acids) or esterified to various alcohols.

Acid–base homeostasis

Maintenance of a constant pH in extracellular body fluids by balanced concentrations of acids and bases.

White adipose tissue

(WAT). A loose connective tissue that predominantly consists of adipocytes and that stores excess nutrients as triacylglycerols.

Very-low-density lipoproteins

(VLDL). Liver-derived plasma lipoproteins of very low density that transport lipids (predominantly triacylglycerols) from the liver to non-hepatic tissues.

Chylomicrons

Intestine-derived plasma lipoproteins that transport dietary lipids (predominantly triacylglycerols) from the digestive tract (intestine) to the liver and other tissues.

Lipases

Enzymes that hydrolyse fatty acid–glycerol esters.

Patatin-like phospholipase domain-containing protein 2

(PNPLA2). A protein with a patatin domain that hydrolyses neutral lipids, phospholipids and retinyl esters.

Patatin domain

A protein domain of approximately 180 amino acids in length that was originally discovered in the potato tuber storage protein patatin.

Brown adipose tissue

Adipose tissue involved in thermoregulation, uncoupling mitochondrial electron transport from ATP synthesis and thereby generating heat during chronic cold exposure.

sn

A notation that stands for 'stereospecific numbering' and describes the stereochemical configuration of chiral glycerol derivatives.

Endocannabinoid signalling

Signalling that comprises cannabinoid receptors and their endogenous ligands, which regulate numerous physiological processes, including energy homeostasis, pain perception, inflammation and tumorigenesis.

Catecholamines

Tyrosine derivatives of catechol, including adrenaline, noradrenaline and dopamine, that act as neuromodulators and hormones.

Natriuretic peptides

Peptides that control the homeostasis of water, sodium and potassium in the body. In adipocytes, these peptides also regulate lipolysis.

Scavenger receptors

Lipoprotein receptors that remove modified lipoproteins (for example, acetylated or oxidized low-density lipoproteins) and other negatively charged macromolecules from the blood.

Kupffer cells

Specialized macrophages in the liver.

Foam cell

A lipid-filled macrophage that is present in atherosclerotic lesions and plaques.

Steatosis

A process describing the abnormal retention of neutral lipids (triacylglycerols and cholesteryl esters) within cells and tissues.

Fatty liver disease

A reversible condition characterized by the excessive accumulation of neutral lipids in the liver. This condition can be subdivided into alcoholic fatty liver disease and non-alcoholic fatty liver disease.

Cachexia

A wasting syndrome characterized by an unintentional and nutritionally irreversible loss of body mass (muscle and fat mass). Various chronic diseases can lead to cachexia, but it is most common in cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 18, 671–684 (2017). https://doi.org/10.1038/nrm.2017.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.76

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing