Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microtubule nucleation: beyond the template

Key Points

  • Assembly of the microtubule nucleus is an energetically unfavourable process.

  • Microtubule nucleation is stimulated and can be controlled by the following two principal activities: by providing a stable template (such as the γ-tubulin ring complex (γTuRC) or a severed microtubule) or by the action of microtubule-associated proteins (MAPs) that stabilize the nascent microtubule 'nucleus'.

  • MAPs with the potential to promote microtubule nucleation include the microtubule polymerases of the XMAP215 family and suppressors of microtubule dynamics.

  • These stabilizing MAPs are also likely to provide an additional layer of control over microtubule nucleation by counteracting microtubule destabilizers that have been shown to inhibit nucleation.

  • The different activities most likely act synergistically in the cell environment to facilitate efficient microtubule nucleation.

Abstract

Microtubules are cytoskeletal filaments central to a wide range of essential cellular functions in eukaryotic cells. Consequently, cells need to exert tight control over when, where and how many microtubules are being made. Whereas the regulation of microtubule dynamics is well studied, the molecular mechanisms of microtubule nucleation are still poorly understood. Next to the established master template of nucleation, the γ-tubulin ring complex, other microtubule-associated proteins that affect microtubule dynamic properties have recently been found to contribute to nucleation. It has begun to emerge that the nucleation efficiency is controlled not only by template activity but also by, either additionally or alternatively, the stabilization of the nascent microtubule 'nucleus'. This suggests a simple conceptual framework for the mechanisms regulating microtubule nucleation in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical pathway of spontaneous filament nucleation.
Figure 2: Visualization of microtubule nuclei.
Figure 3: Enhancing microtubule nucleation.
Figure 4: Different microtubule nucleation templates.

Similar content being viewed by others

References

  1. Keating, T. J. & Borisy, G. G. Centrosomal and non-centrosomal microtubules. Biol. Cell 91, 321–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez, A. D. & Feldman, J. L. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Curr. Opin. Cell Biol. 44, 93–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Lindeboom, J. J. et al. A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342, 1245533 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Helmke, K. J., Heald, R. & Wilbur, J. D. Interplay between spindle architecture and function. Int. Rev. Cell. Mol. Biol. 306, 83–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Gardner, M. K., Zanic, M. & Howard, J. Microtubule catastrophe and rescue. Curr. Opin. Cell Biol. 25, 14–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Nogales, E. & Zhang, R. Visualizing microtubule structural transitions and interactions with associated proteins. Curr. Opin. Struct. Biol. 37, 90–96 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kollman, J. M., Merdes, A., Mourey, L. & Agard, D. A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Teixido-Travesa, N., Roig, J. & Luders, J. The where, when and how of microtubule nucleation — one ring to rule them all. J. Cell Sci. 125, 4445–4456 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, T. C., Neuner, A. & Schiebel, E. Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25, 296–307 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Voter, W. A. & Erickson, H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J. Biol. Chem. 259, 10430–10438 (1984).

    CAS  PubMed  Google Scholar 

  12. Fygenson, D. K., Flyvbjerg, H., Sneppen, K., Libchaber, A. & Leibler, S. Spontaneous nucleation of microtubules. Phys. Rev. E 51, 5058–5063 (1995).

    Article  CAS  Google Scholar 

  13. Wieczorek, M., Bechstedt, S., Chaaban, S. & Brouhard, G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17, 907–916 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. McIntosh, J. R., Morphew, M. K., Grissom, P. M., Gilbert, S. P. & Hoenger, A. Lattice structure of cytoplasmic microtubules in a cultured mammalian cell. J. Mol. Biol. 394, 177–182 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ray, S., Meyhofer, E., Milligan, R. A. & Howard, J. Kinesin follows the microtubule's protofilament axis. J. Cell Biol. 121, 1083–1093 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Erickson, H. P. & Pantaloni, D. The role of subunit entropy in cooperative assembly. Nucleation of microtubules and other two-dimensional polymers. Biophys. J. 34, 293–309 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alushin, G. M. et al. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157, 1117–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue. GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamel, E., del Campo, A. A., Lowe, M. C. & Lin, C. M. Interactions of taxol, microtubule-associated proteins, and guanine nucleotides in tubulin polymerization. J. Biol. Chem. 256, 11887–11894 (1981).

    CAS  PubMed  Google Scholar 

  20. Arnal, I. & Wade, R. H. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, J. C., Hirsh, J. & Timasheff, S. N. In vitro formation of filaments from calf brain microtubule protein. Arch. Biochem. Biophys. 168, 726–729 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. Kellogg, E. H. et al. Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from cryo-EM structures. J. Mol. Biol. 429, 633–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elie-Caille, C. et al. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol. 17, 1765–1770 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Yajima, H. et al. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. J. Cell Biol. 198, 315–322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. C. & Timasheff, S. N. In vitro reconstitution of calf brain microtubules: effects of solution variables. Biochemistry 16, 1754–1764 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Flyvbjerg, H. & Jobs, E. Microtubule dynamics. II. Kinetics of self-assembly. Phys. Rev. E 56, 7083–7099 (1997).

    Article  CAS  Google Scholar 

  27. Cooper, J. A. et al. Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry 22, 2193–2202 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Tobacman, L. S. & Korn, E. D. The kinetics of actin nucleation and polymerization. J. Biol. Chem. 258, 3207–3214 (1983).

    CAS  PubMed  Google Scholar 

  29. Mozziconacci, J., Sandblad, L., Wachsmuth, M., Brunner, D. & Karsenti, E. Tubulin dimers oligomerize before their incorporation into microtubules. PLoS ONE 3, e3821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, H. W., Long, S., Finley, K. R. & Nogales, E. Assembly of GMPCPP-bound tubulin into helical ribbons and tubes and effect of colchicine. Cell Cycle 4, 1157–1160 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Portran, D., Schaedel, L., Xu, Z., Thery, M. & Nachury, M. V. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 19, 391–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Sui, H. & Downing, K. H. Structural basis of interprotofilament interaction and lateral deformation of microtubules. Structure 18, 1022–1031 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gard, D. L. & Kirschner, M. W. Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs. J. Cell Biol. 105, 2191–2201 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Belmont, L. D. & Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76, 623–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Moritz, M., Braunfeld, M. B., Guenebaut, V., Heuser, J. & Agard, D. A. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Wiese, C. & Zheng, Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Aldaz, H., Rice, L. M., Stearns, T. & Agard, D. A. Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature 435, 523–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N. & Agard, D. A. Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466, 879–882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, Y. K., Liu, P., Sze, S. K., Dai, C. & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 191, 1089–1095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, T. C. et al. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. eLife 3, e02208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kollman, J. M. et al. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22, 132–137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flyvbjerg, H., Jobs, E. & Leibler, S. Kinetics of self-assembling microtubules: an “inverse problem” in biochemistry. Proc. Natl Acad. Sci. USA 93, 5975–5979 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McNally, F. J. & Vale, R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Srayko, M., O'Toole, E., T., Hyman, A. A. & Muller-Reichert, T. Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr. Biol. 16, 1944–1949 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Baas, P. W. & Ahmad, F. J. The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon. J. Cell Biol. 116, 1231–1241 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Davis, L. J., Odde, D. J., Block, S. M. & Gross, S. P. The importance of lattice defects in katanin-mediated microtubule severing in vitro. Biophys. J. 82, 2916–2927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. White, S. R., Evans, K. J., Lary, J., Cole, J. L. & Lauring, B. Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing. J. Cell Biol. 176, 995–1005 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roll-Mecak, A. & Vale, R. D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451, 363–367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakamura, M. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. New Phytol. 205, 1022–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Sharp, D. J. & Ross, J. L. Microtubule-severing enzymes at the cutting edge. J. Cell Sci. 125, 2561–2569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O'Toole, E., Greenan, G., Lange, K. I., Srayko, M. & Muller-Reichert, T. The role of γ-tubulin in centrosomal microtubule organization. PLoS ONE 7, e29795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strome, S. et al. Spindle dynamics and the role of γ-tubulin in early Caenorhabditis elegans embryos. Mol. Biol. Cell 12, 1751–1764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sampaio, P., Rebollo, E., Varmark, H., Sunkel, C. E. & Gonzalez, C. Organized microtubule arrays in γ-tubulin-depleted Drosophila spermatocytes. Curr. Biol. 11, 1788–1793 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Hannak, E. et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J. Cell Biol. 157, 591–602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yau, K. W. et al. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82, 1058–1073 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Nakaoka, Y., Kimura, A., Tani, T. & Goshima, G. Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens. Plant Cell 27, 228–242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rogers, G. C., Rusan, N. M., Peifer, M. & Rogers, S. L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163–3178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kitamura, E. et al. Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Dev. Cell 18, 248–259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nashchekin, D., Fernandes, A. R. & St Johnston, D. Patronin/Shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior-posterior axis. Dev. Cell 38, 61–72 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203–2215 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Podolski, M., Mahamdeh, M. & Howard, J. Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency. J. Biol. Chem. 289, 28087–28093 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, W. et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J. Cell Biol. 199, 849–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roostalu, J., Cade, N. I. & Surrey, T. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat. Cell Biol. 17, 1422–1434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Al-Bassam, J. et al. Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol. Biol. Cell 23, 2878–2890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gard, D. L., Becker, B. E. & Romney, S. J. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int. Rev. Cytol. 239, 179–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Al-Bassam, J., Larsen, N. A., Hyman, A. A. & Harrison, S. C. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. Structure 15, 355–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Widlund, P. O. et al. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc. Natl Acad. Sci. USA 108, 2741–2746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ayaz, P. et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife 3, e03069 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A. TOG: αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Al-Bassam, J. & Chang, F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol. 21, 604–614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kosco, K. A. et al. Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol. Biol. Cell 12, 2870–2880 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Graf, R., Euteneuer, U., Ho, T. H. & Rehberg, M. Regulated expression of the centrosomal protein DdCP224 affects microtubule dynamics and reveals mechanisms for the control of supernumerary centrosome number. Mol. Biol. Cell 14, 4067–4074 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kawamura, E. et al. MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol. 140, 102–114 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Groen, A. C., Maresca, T. J., Gatlin, J. C., Salmon, E. D. & Mitchison, T. J. Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol. Biol. Cell 20, 2766–2773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat. Cell Biol. 2, 13–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Kronja, I., Kruljac-Letunic, A., Caudron-Herger, M., Bieling, P. & Karsenti, E. XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract. Mol. Biol. Cell 20, 2684–2696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Popov, A. V., Severin, F. & Karsenti, E. XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr. Biol. 12, 1326–1330 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Ghosh, S., Hentrich, C. & Surrey, T. Micropattern-controlled local microtubule nucleation, transport, and mesoscale organization. ACS Chem. Biol. 8, 673–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, a novel xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J. & Vale, R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152, 768–777 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brunet, S. et al. Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PloS ONE 3, e3338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 4, 871–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Schatz, C. A. et al. Importin α-regulated nucleation of microtubules by TPX2. EMBO J. 22, 2060–2070 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brunet, S. et al. Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol. Biol. Cell 15, 5318–5328 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reid, T. A. et al. Suppression of microtubule assembly kinetics by the mitotic protein TPX2. J. Cell Sci. 129, 1319–1328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Al-Bassam, J. et al. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev. Cell 19, 245–258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moriwaki, T. & Goshima, G. Five factors can reconstitute all three phases of microtubule polymerization dynamics. J. Cell Biol. 215, 357–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hannak, E. & Heald, R. Xorbit/CLASP links dynamic microtubules to chromosomes in the Xenopus meiotic spindle. J. Cell Biol. 172, 19–25 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12, 917–930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, J. et al. Molecular pathway of microtubule organization at the Golgi apparatus. Dev. Cell 39, 44–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, K. et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Hendershott, M. C. & Vale, R. D. Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin. Proc. Natl Acad. Sci. USA 111, 5860–5865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, S. et al. NOCA-1 functions with gamma- tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. eLife 4, e08649 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tanaka, N., Meng, W., Nagae, S. & Takeichi, M. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc. Natl Acad. Sci. USA 109, 20029–20034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lazarus, J. E., Moughamian, A. J., Tokito, M. K. & Holzbaur, E. L. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol. 11, e1001611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Prosser, S. L. & Pelletier, L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Ho, C. M. et al. Augmin plays a critical role in organizing the spindle and phragmoplast microtubule arrays in Arabidopsis. Plant Cell 23, 2606–2618 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, T. et al. Augmin triggers microtubule-dependent microtubule nucleation in interphase plant cells. Curr. Biol. 24, 2708–2713 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Nakaoka, Y. et al. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24, 1478–1493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hsia, K. C. et al. Reconstitution of the augmin complex provides insights into its architecture and function. Nat. Cell Biol. 16, 852–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goshima, G., Mayer, M., Zhang, N., Stuurman, N. & Vale, R. D. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181, 421–429 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goshima, G. et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316, 417–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chretien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Brouhard, G. J. & Rice, L. M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 207, 323–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maurer, S. P., Bieling, P., Cope, J., Hoenger, A. & Surrey, T. GTPγS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs). Proc. Natl Acad. Sci. USA 108, 3988–3993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Seetapun, D., Castle, B. T., McIntyre, A. J., Tran, P. T. & Odde, D. J. Estimating the microtubule GTP cap size in vivo. Curr. Biol. 22, 1681–1687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Duellberg, C., Cade, N. I., Holmes, D. & Surrey, T. The size of the EB cap determines instantaneous microtubule stability. eLife 5, e13470 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gardner, M. K. et al. Rapid microtubule self-assembly kinetics. Cell 146, 582–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. VanBuren, V., Odde, D. J. & Cassimeris, L. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc. Natl Acad. Sci. USA 99, 6035–6040 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  PubMed  Google Scholar 

  119. Nogales, E. An electron microscopy journey in the study of microtubule structure and dynamics. Protein Sci. 24, 1912–1919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gekko, K. & Timasheff, S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20, 4667–4676 (1981).

    Article  CAS  PubMed  Google Scholar 

  121. Nogales, E., Wolf, S. G., Khan, I. A., Luduena, R. F. & Downing, K. H. Structure of tubulin at 6.5 A and location of the taxol-binding site. Nature 375, 424–427 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001163), the UK Medical Research Council (FC001163), and the Wellcome Trust (FC001163). J.R acknowledges funding from a Sir Henry Wellcome Postdoctoral Fellowship (100145/Z/12/Z), and T.S., from the European Research Council (Advanced Grant, project 323042).

Author information

Authors and Affiliations

Authors

Contributions

Both T.S. and J.R. discussed the content of the manuscript and contributed substantially to the writing and review/editing of the manuscript before its submission. J.R. assembled the figures.

Corresponding authors

Correspondence to Johanna Roostalu or Thomas Surrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Plus end

Fast growing end of the polar microtubule filament, with exposed β-tubulin at its terminus (Box 1).

Minus end

Slowly growing end of the polar microtubule filament, with exposed α-tubulin at its terminus (Box 1).

Cortical microtubules

Ordered acentrosomal array of microtubules at the plant cell cortex that is important for cell morphogenesis.

Stathmin/Op18

Small, 18 kDa, disordered protein that acts as a tubulin-sequestering factor by binding simultaneously to two tubulin dimers, thereby lowering the polymerization-competent tubulin concentration in the living cell.

Centrosomes

Non-membranous organelles that act as the main microtubule organizing and nucleating centres in somatic animal cells.

Axonemes

Microtubule-based core structural components of cilia consisting of either 9 microtubules organized in a circle (primary cilia) or 9 microtubule doublets organized in a circle with an additional microtubule pair in the middle (motile cilia).

TOG domains

Paddle-shaped tubulin-binding domains composed of six HEAT repeat motifs found in XMAP215, CLASP and crescerin family proteins.

Kinetochore

Large multi-protein complex usually assembled on centromeric DNA that serves as a site of interaction between chromosomes and microtubules.

Aurora A kinase

Serine/threonine kinase with numerous functions in mitosis and meiosis, including centrosome maturation and spindle assembly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roostalu, J., Surrey, T. Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 18, 702–710 (2017). https://doi.org/10.1038/nrm.2017.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing