Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The essential kinase ATR: ensuring faithful duplication of a challenging genome

A Correction to this article was published on 08 November 2017

This article has been updated

Key Points

  • Ataxia telangiectasia and Rad3-related (ATR) is an essential kinase that is active in S phase, senses stressed replication forks and orchestrates a multifaceted response to DNA replication stress. This response helps ensure completion of DNA replication and maintains the integrity of the genome.

  • ATR and its binding partner, ATR-interacting protein (ATRIP), are recruited to stalled forks through direct interactions with the replication protein A–single-stranded DNA (RPA–ssDNA) complex that forms at stressed replication forks. When bound to ssDNA, the kinase activity of ATR is stimulated by the ATR-activating domains of topoisomerase II binding protein 1 (TOPBP1) or Ewing tumour-associated antigen 1 (ETAA1), which are independently recruited to junctions between ssDNA and double-stranded DNA (dsDNA) and to RPA–ssDNA, respectively.

  • ATR activity can be amplified by generating more ssDNA–dsDNA junctions at individual replication forks, through feed-forward signalling loops and by post-translational modifications of the signalling complexes.

  • When activated, ATR directs the replication stress response to arrest the cell cycle, block origin of replication firing and stabilize and repair stalled replication forks.

  • ATR and its effector, checkpoint kinase 1 (CHK1), are active both during an unperturbed S phase, to prevent excessive origin firing, and in response to replication stress, to slow DNA replication. However, this negative regulation of replication initiation does not prevent the firing of dormant origins within a replication domain, which can rescue replication completion without requiring the damaged fork to restart.

  • ATR phosphorylates numerous replisome proteins and repair factors that prevent fork collapse and the formation of DNA breaks. These post-translational modifications regulate the remodelling of replication forks and subsequent nuclease-dependent cleavage and/or resection of forks. They also regulate pathways needed to repair stalled forks and restart DNA synthesis.

Abstract

One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Components of ATR activation pathways.
Figure 2: Generation of the ATR-activating structure at stressed replication forks.
Figure 3: Amplification of ATR signalling.
Figure 4: Pathways regulated by ATR to suppress origin firing.
Figure 5: Proposed mechanisms by which ATR maintains replication fork stability.
Figure 6: Proposed roles of ATR in promoting replication fork restart.

Change history

  • 08 November 2017

    In the original article, references 36, 68 and 110 contained mistakes. These have now been corrected in the HTML and PDF versions of the article.

References

  1. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000). References 2 and 3 demonstrate that ATR is essential for viability in vivo.

    CAS  PubMed  Article  Google Scholar 

  4. O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 33, 497–501 (2003).

    CAS  PubMed  Article  Google Scholar 

  5. Cimprich, K. A., Shin, T. B., Keith, C. T. & Schreiber, S. L. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl Acad. Sci. USA 93, 2850–2855 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Bentley, N. J. et al. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 15, 6641–6651 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Durocher, D. & Jackson, S. P. DNA-PK, ATM and ATR as sensors of DNA damage: Variations on a theme? Curr. Opin. Cell Biol. 13, 225–231 (2001).

    CAS  PubMed  Article  Google Scholar 

  8. Sirbu, B. M. & Cortez, D. DNA damage response: Three levels of DNA repair regulation. Cold Spring Harb. Perspect. Biol. 5, a012724 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Royo, H. et al. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes Dev. 27, 1484–1494 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Maciejowski, J. & de Lange, T. Telomeres in cancer: Tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 18, 175–186 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Kumar, A. et al. ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress. Cell 158, 633–646 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Cimprich, K. A. & Cortez, D. ATR: An essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Sutton, M. D., Smith, B. T., Godoy, V. G. & Walker, G. C. The SOS response: Recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu. Rev. Genet. 34, 479–497 (2000).

    CAS  PubMed  Article  Google Scholar 

  14. Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: Partners in checkpoint signaling. Science 294, 1713–1716 (2001).

    CAS  PubMed  Article  Google Scholar 

  15. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003). References 14 and 15 identify components required for ATR recruitment to ssDNA.

    CAS  PubMed  Google Scholar 

  16. MacDougall, C. A., Byun, T. S., Van, C., Yee, M.-C. & Cimprich, K. A. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007). Reference 16 uses defined DNA substrates in X. laevis egg extracts to show that ssDNA and a ssDNA–dsDNA junction are sufficient to activate ATR signalling.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Mordes, D. A., Glick, G. G., Zhao, R. & Cortez, D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 22, 1478–1489 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Kumar, S. & Burgers, P. M. Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. Genes Dev. 27, 313–321 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Mordes, D. A., Nam, E. A. & Cortez, D. Dpb11 activates the Mec1–Ddc2 complex. Proc. Natl Acad. Sci. USA 105, 18730–18734 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Navadgi-Patil, V. M. & Burgers, P. M. Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J. Biol. Chem. 283, 35853–35859 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Navadgi-Patil, V. M. & Burgers, P. M. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol. Cell 36, 743–753 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Kumagai, A., Lee, J., Yoo, H. Y. & Dunphy, W. G. TopBP1 activates the ATR–ATRIP complex. Cell 124, 943–955 (2006). Reference 22 identifies TOPBP1 as a direct ATR activator.

    CAS  Article  PubMed  Google Scholar 

  23. Bass, T. E. et al. ETAA1 acts at stalled replication forks to maintain genome integrity. Nat. Cell Biol. 18, 1185–1195 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Haahr, P. et al. Activation of the ATR kinase by the RPA-binding protein ETAA1. Nat. Cell Biol. 18, 1196–1207 (2016).

    CAS  PubMed  Article  Google Scholar 

  25. Lee, Y.-C., Zhou, Q., Chen, J. & Yuan, J. RPA-binding protein ETAA1 is an ATR activator involved in DNA replication stress response. Curr. Biol. 26, 3257–3268 (2016). References 23–25 identify ETAA1 as a direct ATR activator.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Zhou, Z.-W. et al. An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence. PLoS Genet. 9, e1003702 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Garcia, V., Furuya, K. & Carr, A. M. Identification and functional analysis of TopBP1 and its homologs. DNA Repair 4, 1227–1239 (2005).

    CAS  PubMed  Article  Google Scholar 

  28. Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K.-I. & Karnitz, L. M. The Rad9–Hus1–Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev. 21, 1472–1477 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Lee, J., Kumagai, A. & Dunphy, W. G. The Rad9–Hus1–Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J. Biol. Chem. 282, 28036–28044 (2007).

    CAS  PubMed  Article  Google Scholar 

  30. Bermudez, V. P. et al. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc. Natl Acad. Sci. USA 100, 1633–1638 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Zou, L., Liu, D. & Elledge, S. J. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl Acad. Sci. USA 100, 13827–13832 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Ellison, V. & Stillman, B. Biochemical characterization of DNA damage checkpoint complexes: Clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 1, E33 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Murakami, T. et al. Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase ε is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8. J. Biol. Chem. 285, 34608–34615 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Crabbé, L. et al. Analysis of replication profiles reveals key role of RFC–Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 17, 1391–1397 (2010).

    PubMed  Article  CAS  Google Scholar 

  35. García-Rodríguez, L. J. et al. A conserved Polε binding module in Ctf18–RFC is required for S-phase checkpoint activation downstream of Mec1. Nucleic Acids Res. 43, 8830–8838 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Duursma, A. M., Driscoll, R., Elias, J. E. & Cimprich, K. A. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol. Cell 50, 116–22 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Lee, J. & Dunphy, W. G. The Mre11–Rad50–Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol. Biol. Cell. 24, 1343–1353 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Cotta-Ramusino, C. et al. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332, 1313–1317 (2011). References 36–38 reveal additional components necessary for ATR activation, although their mechanisms of action are still poorly understood.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Lindsey-Boltz, L. A., Kemp, M. G., Capp, C. & Sancar, A. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR–Chk1 signaling. Cell Cycle 14, 99–108 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  40. Byun, T. S., Pacek, M., Yee, M.-C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005). Reference 40 identifies activities that generate ssDNA to activate ATR.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Zellweger, R. et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 208, 563–579 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Hashimoto, Y., Ray Chaudhuri, A., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17, 1305–1311 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    CAS  PubMed  Article  Google Scholar 

  44. Michael, W. M., Ott, R., Fanning, E. & Newport, J. Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 289, 2133–2137 (2000).

    CAS  PubMed  Article  Google Scholar 

  45. Neelsen, K. J. & Lopes, M. Replication fork reversal in eukaryotes: From dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 16, 207–220 (2015).

    CAS  PubMed  Article  Google Scholar 

  46. Couch, F. B. & Cortez, D. Fork reversal, too much of a good thing. Cell Cycle 13, 1049–1050 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545–562 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Bétous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151–162 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Blastyák, A., Hajdú, I., Unk, I. & Haracska, L. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol. Cell. Biol. 30, 684–693 (2010).

    PubMed  Article  CAS  Google Scholar 

  50. Schwab, R. A., Blackford, A. N. & Niedzwiedz, W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 29, 806–818 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Collis, S. J. et al. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol. Cell 32, 313–324 (2008).

    CAS  PubMed  Article  Google Scholar 

  52. Singh, T. R. et al. ATR-dependent phosphorylation of FANCM at serine 1045 is essential for FANCM functions. Cancer Res. 73, 4300–4310 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Gong, Z., Kim, J.-E., Leung, C. C. Y., Glover, J. N. M. & Chen, J. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol. Cell 37, 438–446 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Xie, J. et al. FANCJ/BACH1 acetylation at lysine 1249 regulates the DNA damage response. PLoS Genet. 8, e1002786 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Blackford, A. N. et al. The DNA translocase activity of FANCM protects stalled replication forks. Hum. Mol. Genet. 21, 2005–2016 (2012).

    CAS  PubMed  Article  Google Scholar 

  56. Patro, B. S., Frøhlich, R., Bohr, V. A. & Stevnsner, T. WRN helicase regulates the ATR–CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I–DNA covalent complexes. J. Cell. Sci. 124, 3967–3979 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Basile, G., Leuzzi, G., Pichierri, P. & Franchitto, A. Checkpoint-dependent and independent roles of the Werner syndrome protein in preserving genome integrity in response to mild replication stress. Nucleic Acids Res. 42, 12628–12639 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Wu, Y. et al. EEPD1 rescues stressed replication forks and maintains genome stability by promoting end resection and homologous recombination repair. PLoS Genet. 11, e1005675 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    CAS  PubMed  Article  Google Scholar 

  60. Gong, Y., Handa, N., Kowalczykowski, S. C. & de Lange, T. PHF11 promotes DSB resection, ATR signaling, and HR. Genes Dev. 31, 46–58 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Lindsey-Boltz, L. A. Bringing it all together: Coupling excision repair to the DNA damage checkpoint. Photochem. Photobiol. 93, 238–244 (2017).

    CAS  PubMed  Article  Google Scholar 

  62. Aze, A., Sannino, V., Soffientini, P., Bachi, A. & Costanzo, V. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat. Cell Biol. 18, 684–691 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Ruiz, S. et al. A Genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol. Cell 62, 307–313 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. de Oliveira, F. M. B. et al. Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. Mol. Cell 57, 1124–1132 (2015).

    PubMed Central  Article  CAS  Google Scholar 

  65. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779–789 (2002).

    CAS  PubMed  Article  Google Scholar 

  67. Koundrioukoff, S. et al. Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity. PLoS Genet. 9, e1003643 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Van, C., Yan, S., Michael, W. M., Waga, S. & Cimprich, K. A. Continued primer synthesis at stalled replication forks contributes to checkpoint activation. J. Cell Biol. 189, 233–246 (2010).

  69. Mourón, S. et al. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol. 20, 1383–1389 (2013).

    PubMed  Article  CAS  Google Scholar 

  70. Bianchi, J. et al. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell 52, 566–573 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. García-Gómez, S. et al. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52, 541–553 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Wan, L. et al. hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep. 14, 1104–1112 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Yan, S. & Michael, W. M. TopBP1 and DNA polymerase-α directly recruit the 9-1-1 complex to stalled DNA replication forks. J. Cell Biol. 184, 793–804 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Maréchal, A. et al. PRP19 transforms into a sensor of RPA–ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol. Cell 53, 235–246 (2014).

    PubMed  Article  CAS  Google Scholar 

  75. Wu, C. S. et al. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev. 28, 1472–1484 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Yoo, H. Y., Kumagai, A., Shevchenko, A., Shevchenko, A. & Dunphy, W. G. Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J. Biol. Chem. 282, 17501–17506 (2007).

    CAS  PubMed  Article  Google Scholar 

  77. Venere, M., Snyder, A., Zgheib, O. & Halazonetis, T. D. Phosphorylation of ATR-interacting protein on Ser239 mediates an interaction with breast-ovarian cancer susceptibility 1 and checkpoint function. Cancer Res. 67, 6100–6105 (2007).

    CAS  PubMed  Article  Google Scholar 

  78. Myers, J. S., Zhao, R., Xu, X., Ham, A.-J. L. & Cortez, D. Cyclin-dependent kinase 2 dependent phosphorylation of ATRIP regulates the G2-M checkpoint response to DNA damage. Cancer Res. 67, 6685–6690 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Zhang, H. et al. ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA–ssDNA. Cell Rep. 14, 1435–1447 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Liu, S. et al. ATR autophosphorylation as a molecular switch for checkpoint activation. Mol. Cell 43, 192–202 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Nam, E. A. et al. Thr-1989 phosphorylation is a marker of active ataxia telangiectasia-mutated and Rad3-related (ATR) kinase. J. Biol. Chem. 286, 28707–28714 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    CAS  PubMed  Article  Google Scholar 

  83. Daniel, J. A. et al. Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J. Cell Biol. 183, 777–783 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443, 222–225 (2006).

    CAS  PubMed  Article  Google Scholar 

  85. Jarrett, S. G. et al. PKA-mediated phosphorylation of ATR promotes recruitment of XPA to UV-induced DNA damage. Mol. Cell 54, 999–1011 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Meirelles, G. V. et al. 'Stop Ne(c)king around': How interactomics contributes to functionally characterize Nek family kinases. World J. Biol. Chem. 5, 141–160 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Navadgi-Patil, V. M. & Burgers, P. M. Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. Biochem. Soc. Trans. 39, 600–605 (2011).

    CAS  PubMed  Article  Google Scholar 

  88. Kumagai, A. & Dunphy, W. G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839–849 (2000).

    CAS  Article  PubMed  Google Scholar 

  89. Karlsson-Rosenthal, C. & Millar, J. B. A. Cdc25: Mechanisms of checkpoint inhibition and recovery. Trends Cell Biol. 16, 285–292 (2006).

    CAS  PubMed  Article  Google Scholar 

  90. Boutros, R., Dozier, C. & Ducommun, B. The when and wheres of CDC25 phosphatases. Curr. Opin. Cell Biol. 18, 185–191 (2006).

    CAS  PubMed  Article  Google Scholar 

  91. Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 1425–1429 (2000).

    CAS  PubMed  Article  Google Scholar 

  92. Sørensen, C. S. et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3, 247–258 (2003).

    PubMed  Article  Google Scholar 

  93. Peng, C. Y. et al. Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    CAS  PubMed  Article  Google Scholar 

  94. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).

    CAS  PubMed  Article  Google Scholar 

  95. Fragkos, M., Ganier, O., Coulombe, P. & Méchali, M. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360–374 (2015).

    CAS  Article  PubMed  Google Scholar 

  96. Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nat. Cell Biol. 6, 648–655 (2004).

    CAS  PubMed  Article  Google Scholar 

  97. Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071–28081 (2004).

    CAS  PubMed  Article  Google Scholar 

  98. Katsuno, Y. et al. Cyclin A–Cdk1 regulates the origin firing program in mammalian cells. Proc. Natl Acad. Sci. USA 106, 3184–3189 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Santocanale, C. & Diffley, J. F. A. Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615–618 (1998). Reference 99 is the first study to show that the replication checkpoint regulates origin firing.

    CAS  PubMed  Article  Google Scholar 

  100. Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 11, 203–213 (2003).

    CAS  PubMed  Article  Google Scholar 

  101. Karnani, N. & Dutta, A. The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev. 25, 621–633 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Yekezare, M., Gómez-González, B. & Diffley, J. F. X. Controlling DNA replication origins in response to DNA damage — inhibit globally, activate locally. J. Cell. Sci. 126, 1297–1306 (2013).

    CAS  PubMed  Article  Google Scholar 

  103. Deegan, T. D., Yeeles, J. T. & Diffley, J. F. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J. 35, 961–973 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Heffernan, T. P. et al. Cdc7–Dbf4 and the human S checkpoint response to UVC. J. Biol. Chem. 282, 9458–9468 (2007).

    CAS  PubMed  Article  Google Scholar 

  105. Zegerman, P. & Diffley, J. F. X. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467, 474–478 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Zhao, H., Watkins, J. L. & Piwnica-Worms, H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl Acad. Sci. USA 99, 14795–14800 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343–346 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Lopez-Mosqueda, J. et al. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature 467, 479–483 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Guo, C. et al. Interaction of Chk1 with Treslin negatively regulates the initiation of chromosomal DNA replication. Mol. Cell 57, 1–14 (2015). References 105 and 107–109 reveal key replication checkpoint targets and phosphorylation events for inhibiting origin firing.

    Article  CAS  Google Scholar 

  110. Ge, X. Q. & Blow, J. J. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 191, 1285–1297 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Petermann, E. et al. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol. Cell. Biol. 26, 3319–3326 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Petermann, E. & Caldecott, K. W. Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle 5, 2203–2209 (2006).

    CAS  PubMed  Article  Google Scholar 

  113. Maya-Mendoza, A., Petermann, E., Gillespie, D. A. F., Caldecott, K. W. & Jackson, D. A. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 26, 2719–2731 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Petermann, E., Woodcock, M. & Helleday, T. Chk1 promotes replication fork progression by controlling replication initiation. Proc. Natl Acad. Sci. USA 107, 16090–16095 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. Couch, F. B. et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27, 1610–1623 (2013). Reference 115 demonstrates that ATR regulation of SMARCAL1 is needed to prevent excessive fork remodelling that results in SLX4-dependent fork breakage.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Técher, H. et al. Signaling from Mus81–Eme2-dependent DNA damage elicited by Chk1 deficiency modulates replication fork speed and origin usage. Cell Rep. 14, 1114–1127 (2016).

    PubMed  Article  CAS  Google Scholar 

  117. Thomson, A. M., Gillespie, P. J. & Blow, J. J. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. Cell Biol. J. 188, 209–221 (2010).

    CAS  Article  Google Scholar 

  118. Cortez, D., Glick, G. & Elledge, S. J. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc. Natl Acad. Sci. USA 101, 10078–10083 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. Trenz, K., Errico, A. & Costanzo, V. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 27, 876–885 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Chen, Y.-H. et al. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell 58, 323–338 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).

    CAS  PubMed  Article  Google Scholar 

  122. Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001). References 121 and 122 show in Saccharomyces cerevisiae that the ATR pathway regulates both fork stability and origin firing.

    CAS  PubMed  Article  Google Scholar 

  123. Chanoux, R. A. et al. ATR and H2AX cooperate in maintaining genome stability under replication stress. J. Biol. Chem. 284, 5994–6003 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Cobb, J. A., Bjergbaek, L., Shimada, K., Frei, C. & Gasser, S. M. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22, 4325–4336 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. De Piccoli, G. et al. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell 45, 696–704 (2012).

    CAS  PubMed  Article  Google Scholar 

  126. Dungrawala, H. et al. The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol. Cell 59, 998–1010 (2015). References 125 and 126 provide evidence that replisome stability is independent of the replication checkpoint.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).

    CAS  PubMed  Article  Google Scholar 

  128. Ragland, R. L. et al. RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev. 27, 2259–2273 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Wyatt, H. D. M., Sarbajna, S., Matos, J. & West, S. C. Coordinated actions of SLX1–SLX4 and MUS81–EME1 for Holliday junction resolution in human cells. Mol. Cell 52, 234–247 (2013).

    CAS  PubMed  Article  Google Scholar 

  130. Duda, H. et al. A Mechanism for controlled breakage of under-replicated chromosomes during mitosis. Dev. Cell 39, 740–755 (2016).

    CAS  PubMed  Article  Google Scholar 

  131. Domínguez-Kelly, R. et al. Wee1 controls genomic stability during replication by regulating the Mus81–Eme1 endonuclease. J. Cell Biol. 194, 567–579 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. Pepe, A. & West, S. C. MUS81-EME2 promotes replication fork restart. Cell Rep. 7, 1048–1055 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. Forment, J. V., Blasius, M., Guerini, I. & Jackson, S. P. Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS ONE 6, e23517 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Murfuni, I. et al. Survival of the replication checkpoint deficient cells requires MUS81–RAD52 function. PLoS Genet. 9, e1003910 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat. Struct. Mol. Biol. 14, 1096–1104 (2007).

    CAS  PubMed  Article  Google Scholar 

  136. Buisson, R., Boisvert, J. L., Benes, C. H. & Zou, L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Mol. Cell 59, 1011–1024 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Errico, A. & Costanzo, V. Mechanisms of replication fork protection: A safeguard for genome stability. Crit. Rev. Biochem. Mol. Biol. 47, 222–235 (2012).

    CAS  PubMed  Article  Google Scholar 

  138. Lossaint, G. et al. FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling. Mol. Cell 51, 678–690 (2013). Reference 138 shows that ATR signalling regulates the S phase checkpoint in part by promoting an interaction of FANCD2 with the MCM helicase.

    CAS  Article  PubMed  Google Scholar 

  139. Kumar, S. & Huberman, J. A. Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast. Mol. Cell. Biol. 29, 602–611 (2009).

    CAS  PubMed  Article  Google Scholar 

  140. Seiler, J. A., Conti, C., Syed, A., Aladjem, M. I. & Pommier, Y. The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol. Cell. Biol. 27, 5806–5818 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. Conti, C., Seiler, J. A. & Pommier, Y. The mammalian DNA replication elongation checkpoint: Implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses. Cell Cycle 6, 2760–2767 (2007).

    CAS  PubMed  Article  Google Scholar 

  142. Toledo, L. I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013). Reference 142 demonstrates that, in conditions of high replicative stress, ATR is needed to prevent excessive accumulation of ssDNA, which can exhaust the availability of RPA.

    CAS  PubMed  Article  Google Scholar 

  143. Murphy, A. K. et al. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J. Cell Biol. 206, 493–507 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Vassin, V. M., Anantha, R. W., Sokolova, E., Kanner, S. & Borowiec, J. A. Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J. Cell. Sci. 122, 4070–4080 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Buisson, R. et al. Coupling of homologous recombination and the checkpoint by ATR. Mol. Cell 65, 336–346 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Ahlskog, J. K., Larsen, B. D., Achanta, K. & Sørensen, C. S. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function. EMBO Rep. 17, 671–681 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. Somyajit, K., Basavaraju, S., Scully, R. & Nagaraju, G. ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair. Mol. Cell. Biol. 33, 1830–1844 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Kolinjivadi, A. M. et al. Moonlighting at replication forks — a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. 591, 1083–1100 (2017).

    CAS  PubMed  Article  Google Scholar 

  150. Sale, J. E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012708 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. Göhler, T., Sabbioneda, S., Green, C. M. & Lehmann, A. R. ATR-mediated phosphorylation of DNA polymerase η is needed for efficient recovery from UV damage. J. Cell Biol. 192, 219–227 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. Davies, S. L., North, P. S., Dart, A., Lakin, N. D. & Hickson, I. D. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell. Biol. 24, 1279–1291 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. Ammazzalorso, F., Pirzio, L. M., Bignami, M., Franchitto, A. & Pichierri, P. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J. 29, 3156–3169 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. Zhao, X., Muller, E. G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).

    CAS  PubMed  Article  Google Scholar 

  155. Huang, M., Zhou, Z. & Elledge, S. J. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94, 595–605 (1998).

    CAS  PubMed  Article  Google Scholar 

  156. Sanvisens, N., de Llanos, R. & Puig, S. Function and regulation of yeast ribonucleotide reductase: Cell cycle, genotoxic stress, and iron bioavailability. Biomed J. 36, 51–58 (2013).

    PubMed  Article  Google Scholar 

  157. D'Angiolella, V. et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149, 1023–1034 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Lopez-Contreras, A. J. et al. Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice. Genes Dev. 29, 690–695 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. Murga, M. et al. A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat. Genet. 41, 891–898 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. Karnitz, L. M. & Zou, L. Molecular pathways: Targeting ATR in cancer therapy. Clin. Cancer Res. 21, 4780–4785 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. Yeeles, J. T. P., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. Tuduri, S., Tourrière, H. & Pasero, P. Defining replication origin efficiency using DNA fiber assays. Chromosome Res. 18, 91–102 (2010).

    CAS  PubMed  Article  Google Scholar 

  163. Ball, H. L., Myers, J. S. & Cortez, D. ATRIP binding to replication protein A-single-stranded DNA promotes ATR–ATRIP localization but is dispensable for Chk1 phosphorylation. Mol. Biol. Cell 16, 2372–2381 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Ball, H. L. & Cortez, D. ATRIP oligomerization is required for ATR-dependent checkpoint signaling. J. Biol. Chem. 280, 31390–31396 (2005).

    CAS  PubMed  Article  Google Scholar 

  165. Ball, H. L. et al. Function of a conserved checkpoint recruitment domain in ATRIP proteins. Mol. Cell. Biol. 27, 3367–3377 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Itakura, E., Sawada, I. & Matsuura, A. Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks. Mol. Biol. Cell 16, 5551–5562 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Sawicka, M. et al. The dimeric architecture of checkpoint kinases Mec1ATR and Tel1ATM reveal a common structural organization. J. Biol. Chem. 291, 13436–13447 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. Mordes, D. A. & Cortez, D. Activation of ATR and related PIKKs. Cell Cycle 7, 2809–2812 (2008).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a postdoctoral fellowship from the American Cancer Society (PF-15-165-01 — DMC) and a Postdoctoral Enrichment Program Award from the Burroughs Wellcome Fund to J.C.S., a US National Institutes of Health (NIH) grant (CA102729) to D.C., and grants from the NIH (GM100489 and ES016486) to K.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlene A. Cimprich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Replication stress

The slowing or stalling of replication fork progression and/or DNA synthesis.

Hypomorphic alleles

Mutated genes that encode proteins with reduced function.

Genotoxic stress

Any agent that damages cellular DNA.

Topoisomerase

An enzyme that relieves torsional stress caused by DNA supercoiling during replication or transcription.

SOS DNA damage response

A bacterial DNA damage response that arrests the cell cycle and induces error-prone DNA repair.

Stalled replication fork

A replication fork that has prematurely halted DNA synthesis.

Clamp loader

A protein complex that catalyses the loading of clamp complexes onto DNA.

Replisome

A multiprotein complex that unwinds double-stranded DNA and catalyses both leading and lagging strand DNA synthesis.

Nascent DNA

The newly synthesized strands of DNA during DNA replication.

Origin firing

The initiation of DNA replication at an origin.

Fork restart

The process of restarting DNA replication at a fork that had been stalled.

Holliday junctions

Branched structures that contain a four-way junction of double-stranded DNA.

DNA damage tolerance

A set of pathways that allow cells to replicate damaged DNA, including translesion synthesis and template switching.

Template switching

The transferring of the DNA polymerase to using the newly synthesized DNA strand as a template for DNA replication when the parental template is damaged.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saldivar, J., Cortez, D. & Cimprich, K. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 18, 622–636 (2017). https://doi.org/10.1038/nrm.2017.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing