Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of DNA–protein crosslink repair

Key Points

  • Covalent DNA–protein crosslinks (DPCs) are highly toxic DNA lesions that are induced by widely used classes of chemotherapeutics and also by various external and endogenous agents.

  • DPCs consist of three distinct components, which are harnessed by distinct repair mechanisms as a starting point for repair.

  • Tyrosyl-DNA phosphodiesterases directly hydrolyse the covalent bond between protein and DNA at DPCs.

  • Nuclease-dependent repair by the MRE11–RAD50–NBS1 (MRN) complex targets the DNA component of DPCs.

  • Proteolytic repair by the spartan (SPRTN)/weak suppressor of SMT3 protein 1 (Wss1) protease family degrades the protein component of DPCs.

  • Inhibition of DPC repair pathways offers novel therapeutic opportunities for anticancer combination therapies.

Abstract

Covalent DNA–protein crosslinks (DPCs, also known as protein adducts) of topoisomerases and other proteins with DNA are highly toxic DNA lesions. Of note, chemical agents that induce DPCs include widely used classes of chemotherapeutics. Their bulkiness blocks virtually every chromatin-based process and makes them intractable for repair by canonical repair pathways. Distinct DPC repair pathways employ unique points of attack and are crucial for the maintenance of genome stability. Tyrosyl-DNA phosphodiesterases (TDPs) directly hydrolyse the covalent linkage between protein and DNA. The MRE11–RAD50–NBS1 (MRN) nuclease complex targets the DNA component of DPCs, excising the fragment affected by the lesion, whereas proteases of the spartan (SPRTN)/weak suppressor of SMT3 protein 1 (Wss1) family target the protein component. Loss of these pathways renders cells sensitive to DPC-inducing chemotherapeutics, and DPC repair pathways are thus attractive targets for combination cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some widely used chemotherapeutic agents can induce DNA–protein crosslinks.
Figure 2: Mechanisms of DNA–protein crosslink repair.
Figure 3: Mechanism and regulation of DNA–protein crosslink repair by tyrosyl- DNA phospodiesterases.
Figure 4: Mechanism and regulation of DNA–protein crosslink repair by the MRN complex.
Figure 5: Mechanism and regulation of DNA–protein crosslink repair by proteases.

Similar content being viewed by others

References

  1. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    CAS  PubMed  Google Scholar 

  2. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  4. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Oza, A. M. et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol. 16, 87–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Nakano, T. et al. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. J. Biol. Chem. 287, 6562–6572 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Nakano, T. et al. Translocation and stability of replicative DNA helicases upon encountering DNA-protein cross-links. J. Biol. Chem. 288, 4649–4658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu, Y. V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuo, H. K., Griffith, J. D. & Kreuzer, K. N. 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res. 67, 8248–8254 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Stingele, J. & Jentsch, S. DNA-protein crosslink repair. Nat. Rev. Mol. Cell Biol. 16, 455–460 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Chvalova, K., Brabec, V. & Kasparkova, J. Mechanism of the formation of DNA-protein cross-links by antitumor cisplatin. Nucleic Acids Res. 35, 1812–1821 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pommier, Y. & Marchand, C. Interfacial inhibitors: targeting macromolecular complexes. Nat. Rev. Drug Discov. 11, 25–36 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fenaux, P. et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol. 28, 562–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Maslov, A. Y. et al. 5-Aza-2′-deoxycytidine-induced genome rearrangements are mediated by DNMT1. Oncogene 31, 5172–5179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barker, S., Weinfeld, M. & Murray, D. DNA-protein crosslinks: their induction, repair, and biological consequences. Mutat. Res. 589, 111–135 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Pommier, Y. et al. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst.) 19, 114–129 (2014).

    Article  CAS  Google Scholar 

  23. DeMott, M. S. et al. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone. J. Biol. Chem. 277, 7637–7640 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Sczepanski, J. T., Wong, R. S., McKnight, J. N., Bowman, G. D. & Greenberg, M. M. Rapid DNA–protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc. Natl Acad. Sci. USA 107, 22475–22480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, S. W. et al. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc. Natl Acad. Sci. USA 93, 11534–11539 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pouliot, J. J., Yao, K. C., Robertson, C. A. & Nash, H. A. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 286, 552–555 (1999). References 26 and 27 identify Tdp1 in yeast as an enzyme that is capable of releasing covalent Top1 adducts.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, C. P., Ban, Y., Lyu, Y. L., Desai, S. D. & Liu, L. F. A ubiquitin-proteasome pathway for the repair of topoisomerase I-DNA covalent complexes. J. Biol. Chem. 283, 21074–21083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Interthal, H. & Champoux, J. J. Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1. Biochem. J. 436, 559 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Debethune, L., Kohlhagen, G., Grandas, A. & Pommier, Y. Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Res. 30, 1198–1204 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. El-Khamisy, S. F. To live or to die: a matter of processing damaged DNA termini in neurons. EMBO Mol. Med. 3, 78–88 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hudson, J. J., Chiang, S. C., Wells, O. S., Rookyard, C. & El-Khamisy, S. F. SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair. Nat. Commun. 3, 733 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Das, B. B. et al. PARP1-TDP1 coupling for the repair of topoisomerase I-induced DNA damage. Nucleic Acids Res. 42, 4435–4449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das, B. B. et al. Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J. 28, 3667–3680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiang, S. C., Carroll, J. & El-Khamisy, S. F. TDP1 serine 81 promotes interaction with DNA ligase IIIalpha and facilitates cell survival following DNA damage. Cell Cycle 9, 588–595 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Cortes Ledesma, F., El Khamisy, S. F., Zuma, M. C., Osborn, K. & Caldecott, K. W. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461, 674–678 (2009). Identified TDP2 as the first-characterized human enzyme with 5′-tyrosyl DNA phosphodiesterase activity, which is important for releasing covalent TOP2 adducts.

    Article  PubMed  CAS  Google Scholar 

  38. Gao, R. et al. Proteolytic degradation of topoisomerase II (Top2) enables the processing of Top2·DNA and Top2·RNA covalent complexes by tyrosyl-DNA-phosphodiesterase 2 (TDP2). J. Biol. Chem. 289, 17960–17969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mao, Y., Desai, S. D., Ting, C. Y., Hwang, J. & Liu, L. F. 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J. Biol. Chem. 276, 40652–40658 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Gomez-Herreros, F. et al. TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat. Genet. 46, 516–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Gomez-Herreros, F. et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 9, e1003226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao, T. et al. Novel TDP2-ubiquitin interactions and their importance for the repair of topoisomerase II-mediated DNA damage. Nucleic Acids Res. 44, 10201–10215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stracker, T. H. & Petrini, J. H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Woodworth, D. L. & Kreuzer, K. N. Bacteriophage T4 mutants hypersensitive to an antitumor agent that induces topoisomerase-DNA cleavage complexes. Genetics 143, 1081–1090 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stohr, B. A. & Kreuzer, K. N. Repair of topoisomerase-mediated DNA damage in bacteriophage T4. Genetics 158, 19–28 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Connelly, J. C., de Leau, E. S. & Leach, D. R. Nucleolytic processing of a protein-bound DNA end by the E. coli SbcCD (MR) complex. DNA Repair (Amst.) 2, 795–807 (2003).

    Article  CAS  Google Scholar 

  47. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005). Provides the first direct evidence that the nuclease MRN (MRX) can release covalent protein adducts from DSB ends.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hartsuiker, E. et al. Ctp1CtIP and Rad32Mre11 nuclease activity are required for Rec12Spo11 removal, but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Mol. Cell. Biol. 29, 1671–1681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hartsuiker, E., Neale, M. J. & Carr, A. M. Distinct requirements for the Rad32Mre11 nuclease and Ctp1CtIP in the removal of covalently bound topoisomerase I and II from DNA. Mol. Cell 33, 117–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malik, M. & Nitiss, J. L. DNA repair functions that control sensitivity to topoisomerase-targeting drugs. Eukaryot. Cell 3, 82–90 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, K. C. et al. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol. Open 1, 863–873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoa, N. N. et al. Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol. Cell 64, 580–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Aparicio, T., Baer, R., Gottesman, M. & Gautier, J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J. Cell Biol. 212, 399–408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deshpande, R. A., Lee, J. H., Arora, S. & Paull, T. T. Nbs1 converts the human Mre11/Rad50 nuclease complex into an endo/exonuclease machine specific for protein-DNA adducts. Mol. Cell 64, 593–606 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Cannavo, E. & Cejka, P. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sacho, E. J. & Maizels, N. DNA repair factor MRE11/RAD50 cleaves 3′-phosphotyrosyl bonds and resects DNA to repair damage caused by topoisomerase 1 poisons. J. Biol. Chem. 286, 44945–44951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Graaf, B., Clore, A. & McCullough, A. K. Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks. DNA Repair (Amst.) 8, 1207–1214 (2009).

    Article  CAS  Google Scholar 

  60. Stingele, J., Schwarz, M. S., Bloemeke, N., Wolf, P. G. & Jentsch, S. A. DNA-dependent protease involved in DNA-protein crosslink repair. Cell 158, 327–338 (2014). Identifies Wss1 as a DNA-dependent protease that repairs covalent DPCs.

    Article  CAS  PubMed  Google Scholar 

  61. Duxin, J. P., Dewar, J. M., Yardimci, H. & Walter, J. C. Repair of a DNA-protein crosslink by replication-coupled proteolysis. Cell 159, 346–357 (2014). Describes the detailed mechanisms of replication-coupled proteolytic DPC repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stingele, J. et al. Mechanism and regulation of DNA-protein crosslink repair by the DNA-dependent metalloprotease SPRTN. Mol. Cell 64, 688–703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vaz, B. et al. Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-protein crosslink repair. Mol. Cell 64, 704–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lopez-Mosqueda, J. et al. SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks. eLife 5, e21491 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Morocz, M. et al. DNA-dependent protease activity of human Spartan facilitates replication of DNA-protein crosslink-containing DNA. Nucleic Acids Res. 45, 3172–3188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Maskey, R. S. et al. Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis. Nucleic Acids Res. 45, 4564–4576 (2017). References 62–66 identify SPRTN as the DPC protease that operates in higher eukaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stingele, J., Habermann, B. & Jentsch, S. DNA-protein crosslink repair: proteases as DNA repair enzymes. Trends Biochem. Sci. 40, 67–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Ruijs, M. W. G. et al. Atypical progeroid syndrome: an unknown helicase gene defect? Am. J. Med. Genet. A 116A, 295–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Lessel, D. et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat. Genet. 46, 1239–1244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Machida, Y., Kim, M. S. & Machida, Y. J. Spartan/C1orf124 is important to prevent UV-induced mutagenesis. Cell Cycle 11, 3395–3402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakano, T. et al. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells. J. Biol. Chem. 284, 27065–27076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakano, T. et al. Nucleotide excision repair and homologous recombination systems commit differentially to the repair of DNA-protein crosslinks. Mol. Cell 28, 147–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Baker, D. J. et al. Nucleotide excision repair eliminates unique DNA-protein cross-links from mammalian cells. J. Biol. Chem. 282, 22592–22604 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Vance, J. R. & Wilson, T. E. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage. Proc. Natl Acad. Sci. USA 99, 13669–13674 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y. W. et al. Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res. 39, 3607–3620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ridpath, J. R. et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res. 67, 11117–11122 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Garaycoechea, J. I. et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489, 571–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Langevin, F., Crossan, G. P., Rosado, I. V., Arends, M. J. & Patel, K. J. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Rosado, I. V., Langevin, F., Crossan, G. P., Takata, M. & Patel, K. J. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat. Struct. Mol. Biol. 18, 1432–1434 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Kottemann, M. C. & Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493, 356–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Duxin, J. P. & Walter, J. C. What is the DNA repair defect underlying Fanconi anemia? Curr. Opin. Cell Biol. 37, 49–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Orta, M. L. et al. 5-Aza-2′-deoxycytidine causes replication lesions that require Fanconi anemia-dependent homologous recombination for repair. Nucleic Acids Res. 41, 5827–5836 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deng, C., Brown, J. A., You, D. & Brown, J. M. Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics 170, 591–600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Delabaere, L. et al. The Spartan ortholog maternal haploid is required for paternal chromosome integrity in the Drosophila zygote. Curr. Biol. 24, 2281–2287 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Huang, S. N., Pommier, Y. & Marchand, C. Tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Expert Opin. Ther. Pat. 21, 1285–1292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takemura, H. et al. Defective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J. Biol. Chem. 281, 30814–30823 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Giannini, G. et al. Mutations of an intronic repeat induce impaired MRE11 expression in primary human cancer with microsatellite instability. Oncogene 23, 2640–2647 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Raoof, A. et al. Toxoflavins and deazaflavins as the first reported selective small molecule inhibitors of tyrosyl-DNA phosphodiesterase II. J. Med. Chem. 56, 6352–6370 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Dupre, A. et al. A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat. Chem. Biol. 4, 119–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shibata, A. et al. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol. Cell 53, 7–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Takashima, H. et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet. 32, 267–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Interthal, H. et al. SCAN1 mutant Tdp1 accumulates the enzyme—DNA intermediate and causes camptothecin hypersensitivity. EMBO J. 24, 2224–2233 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hernandez, D. et al. A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23. J. Med. Genet. 30, 135–140 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Saar, K. et al. The gene for the ataxia-telangiectasia variant, Nijmegen breakage syndrome, maps to a 1-cM interval on chromosome 8q21. Am. J. Hum. Genet. 60, 605–610 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Weemaes, C. M. et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr. Scand. 70, 557–564 (1981).

    Article  CAS  PubMed  Google Scholar 

  98. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Chrzanowska, K. H., Gregorek, H., Dembowska-Baginska, B., Kalina, M. A. & Digweed, M. Nijmegen breakage syndrome (NBS). Orphanet J. Rare Dis. 7, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Waltes, R. et al. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am. J. Hum. Genet. 84, 605–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barbi, G. et al. Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. Am. J. Med. Genet. 40, 44–50 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose important findings could not be mentioned as primary literature and/or cited owing to space constraints. The authors thank S. Panier and G. Hewitt for comments and discussions. J.S. is supported by an EMBO Long-term Fellowship (ALTF 470–2015). S.J.B.'s laboratory is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC0010048), the UK Medical Research Council (FC0010048), and the Wellcome Trust (FC0010048); European Research Council (ERC) Advanced Investigator Grants (RecMitMei; TelMetab); and a Wellcome Trust Senior Investigator Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Boulton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Abasic sites

Positions within DNA that lack a DNA base; also known as apurinic or apyrimidinic (AP) sites. They can occur spontaneously or through base excision by DNA glycosylases.

Intrastrand and interstrand DNA crosslinks

Chemical crosslinking of DNA can occur between positions on the same DNA strand (intrastrand) or between opposing strands (interstrand).

Poly(ADP-ribose) polymerase 1

(PARP1). A member of a family of enzymes that catalyse the formation of poly(ADP-ribose) chains, thereby regulating various cellular processes, most notably DNA repair.

Pseudosubstrate

Any molecule that inhibits an enzyme by mimicking a substrate.

Homologous recombination

(HR). A process resulting in the exchange of identical or highly similar DNA sequences between two DNA molecules; it is involved in meiosis, DNA repair and DNA replication.

DNA polymerase β

The DNA polymerase required for gap filling during base excision repair and DNA single-strand break repair.

Ataxia

A medical condition that is characterized by a lack of coordination of voluntary muscle movements; it is often caused by inherited or acquired cerebellum diseases (cerebellar ataxia).

Areflexia

The absence of neurological reflexes.

Telangiectasias

Small dilated blood vessels in the outer layer of the skin or in mucosae. Usually a benign condition, which can be associated with serious genetic or acquired diseases.

Apraxia

A neurological motor disorder that is caused by partial brain damage; affected individuals experience difficulty with motor planning to carry out motor tasks or movements.

Dysarthria

A motor speech disorder characterized by poor articulation of phonemes. It is caused by injuries to the motor component of the motor–speech system of the brain.

Microcephaly

A neurological condition in which affected individuals present with a smaller than normal head owing to defective brain development.

Micrognathia

A medical condition that is characterized by underdevelopment of the jaw.

Proteasome

A protein complex that degrades unneeded or damaged proteins. Proteins are commonly marked for degradation by modification with polyubiquitin chains.

PARylation

A post-translational modification, also known as polyADP-ribosylation, by which polymers of ADP-ribose are attached to substrate proteins by poly(ADP-ribose) polymerases (PARPs).

X-ray repair cross-complementing protein 1

(XRCC1). A molecular scaffold protein that orchestrates the repair of DNA single-strand breaks by recruiting and stabilizing multiple other repair factors.

Ataxia telangiectasia mutated

(ATM). A protein kinase best known for its function in signalling the presence of DNA double-strand breaks, thereby activating a highly sophisticated cellular response.

DNA-dependent protein kinase

(DNA-PK). Heterotrimeric DNA-dependent kinase that comprises KU70, KU80 and the catalytic subunit DNA-PKcs; best known for its central function in non-homologous end joining repair of DNA double-strand breaks.

Replication fork run-off

If a replication fork encounters a single-strand break, the replicative helicase runs off the template strand, resulting in the formation of a highly toxic single-ended DNA double-strand break.

Non-homologous end joining

(NHEJ). The repair of DNA double-strand breaks by directly ligating two DNA ends, irrespective of DNA sequence.

SPO11

A type II DNA topoisomerase that is required for the generation of DNA double-strand breaks during meiosis, which is crucial for genetic recombination.

Synthetic lethality screen

A genetic screening method, which aims to reveal genes that when knocked out cause lethality in combination with a knockout of a gene of interest.

DNA damage checkpoint

A cellular signalling mechanism that pauses the cell cycle in response to the presence of DNA damage, thereby providing enough time to ensure that repair can occur before the next cell division.

AAA-ATPase

A diverse class of enzymes that are involved in various cellular processes. AAA-ATPases use energy obtained from ATP hydrolysis to generate mechanical forces through conformational changes.

Hypomorphic mutations

Mutations that cause a partial loss of function; for example, by reduced gene expression or decreased protein stability. Hypomorphic mutations mostly display less severe phenotypes than a complete gene loss.

Hepatocellular carcinomas

The most common type of liver cancer; often caused by hepatitis virus (B or C) and substances such as aflatoxin and ethanol.

Translesion synthesis polymerases

DNA polymerases with the ability to synthesize past DNA lesions due to a flexible active site; they often display low fidelity and thus tend to incorporate mutations.

Nucleotide excision repair

(NER). A DNA repair pathway that repairs primarily bulky adducts, such as those induced by ultraviolet (UV) light. Repair is achieved by excision of a short stretch of nucleotides that contains the DNA lesion.

Template switch

A recombination process that allows the replication of damaged DNA strands by using the newly replicated sister strand as a template for DNA synthesis.

Mismatch repair

A conserved DNA repair pathway that detects and repairs base–base mismatches and insertion–deletion mispairs, which can be generated by mistakes during replication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stingele, J., Bellelli, R. & Boulton, S. Mechanisms of DNA–protein crosslink repair. Nat Rev Mol Cell Biol 18, 563–573 (2017). https://doi.org/10.1038/nrm.2017.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.56

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer